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Introduc$on 

Crop models now integrate advanced processes such as biochemical photosynthesis and stomatal conductance, which 
link carbon and water fluxes. However, calibra=on is even more challenging, as fi?ng one output can create errors in 
others. Widely used in hydrology compared to crop modelling, mul=-objec=ve op=misa=on algorithms handle 
conflic=ng objec=ves by exploring trade-offs using Pareto-based sampling approach. Beyond iden=fying op=mal 
parameter sets, they also provide valuable insights into model behaviour, revealing structural limita=ons or equifinality. 

Materials and Methods 

This research was conducted on four growing seasons of winter wheat, with detailed flux and biomass data measured 
at BE-Lon site, Belgium. The Daisy sol-plant-atmosphere model was applied in an hourly setup with site-specific 
meteorological, soil and crop inputs. It included the Soil-Vegeta=on-Atmosphere-Transfer (SVAT) module which couples 
the biochemical photosynthesis model (de Pury and Farquhar, 1997) with the surface energy balance through the 
stomatal conductance (Plauborg et al., 2010). 

Influen=al parameters were selected based on a previous global sensi=vity analysis performed on the same dataset. 
Regarding model calibra=on, we used the Speed-constrained Mul=-objec=ve Par=cle Swarm Op=misa=on (SMPSO) 
algorithm, seeking trade-offs among three objec=ves: dry ma\er (DM), Net Ecosystem Exchange (NEE) and latent heat 
flux (LE). The rela=ve Root Mean Square Error (rRMSE) was used as objec=ve func=on (F) for these three variables to 
enable fair comparison between them. 

Results and Discussion 

The Pareto analysis revealed clear trade-offs, especially between dry ma\er and NEE, indica=ng structural issues or 
biases in measurements (Fig. 1). While dry ma\er and NEE were reasonably simulated (RMSE = 0.948 t ha-1 for DM; 1.49 
gC m-2 d-1 for daily NEE), discrepancies pointed to problems in es=ma=on of heterotrophic respira=on and observa=onal 
uncertain=es. LE fluxes were poorly captured (RMSE = 30.7 W m-2 using daily fluxes), with the model underes=ma=ng 
variability and failing during high temperature and VPD periods. These shortcomings were linked to simplifica=ons in 
evapotranspira=on modelling and an inability to reproduce stomatal decoupling during heatwaves, i.e. when plants 
increase transpira=on to promote leaf cooling (Marchin et al., 2023). 

 



 
 

 

 
Figure 1. Non-dominated solutions in the objective space: (a) 3D Pareto front, and 2D projections considering (b) DM and NEE, or (c) LE and NEE 

Conclusions 

The Pareto-based calibra=on proved useful for iden=fying parameter sets balancing carbon and water exchanges, but 
also for diagnosing structural weaknesses and guiding improvements in crop modelling. This study underlines the need 
to move beyond the simplified FAO56 approach and to be\er capture stomatal regula=on under heat and high 
atmospheric demand. A deeper understanding and integra=on of stomatal decoupling mechanisms would enhance crop 
models’ ability to simulate plants responses to heatwaves, which are expected to become more frequent with climate 
change. 
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Introduc$on  

Temperate vegetable crops such as kimchi cabbage are increasingly vulnerable to climate variability, underscoring the 
need for accurate yield predic=on to support climate adapta=on strategies and ensure stable produc=on. Process-based 
crop models (PBMs) provide a structured framework to simulate poten=al growth, but they ofen fail to capture 
discrepancies between simulated and observed yields due to environmental and management constraints.  

Materials and Methods  

Fresh weight measurements of kimchi cabbage were collected biweekly from 17 farms with varying plan=ng dates in 
Taebaek, Gangneung, and Pyeongchang, the main highland produc=on regions of South Korea. A hybrid modeling 
framework was developed by integra=ng the K-cabbage PBM with three machine learning (ML) algorithms: random 
forest (RF), XGBoost (XGB), and deep neural networks (DNNs). Eight feature subsets were evaluated, incorpora=ng mean 
temperature, growing degree days (GDD), cumula=ve precipita=on, and PBM-derived poten=al yield es=mates. Model 
performance was assessed using root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE).  

Results and Discussion  

RF and XGB consistently outperformed DNNs, producing higher NSE and lower RMSE values. The highest predic=ve 
accuracy was achieved when cumula=ve precipita=on and PBM-based yield es=mates were included as predictors, 
highligh=ng the value of combining climate and model-derived features. These results emphasize that both algorithm 
choice and feature selec=on cri=cally affect ML performance in yield predic=on.   

 

 
Figure 1. Hybrid modeling framework and comparative performance of machine learning approaches for kimchi cabbage yield prediction.  

 

 

 

 



 
 

 

Conclusions  

This study demonstrates that integra=ng PBMs with ML algorithms, informed by farm-level observa=ons of climate and 
crop growth, enhances the predic=on of actual kimchi cabbage yield. The approach provides a promising framework for 
advancing crop yield forecas=ng under climate variability and can inform broader applica=ons in climate-resilient 
agriculture.  
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Introduc$on  

To face climate change, plants are increasingly cul=vated in complex environments, such as within agrivoltaic systems, 
in agroforestry configura=ons, downstream vegeta=ve hedgerows, or in urban landscapes. Designing such agricultural 
systems requires inves=ga=ng the influence of spa=ally heterogeneous and temporally varying microclimates on soil-
plant-air energy and water exchanges, ul=mately on plant temperature and soil water content. Current state-of-the-art 
crop models ofen lack detailed microclimate representa=on. They either operate on daily =me steps and spa=al 
averages – oversimplifying the microclimate complexity – or are highly detailed, like Func=onal Structural Plant Models, 
making them difficult to couple with fine-scale microclimate models. This study introduces an approach that couples a 
Computa=onal Fluid Dynamics (CFD) solver – designed to simulate airflow, radia=on, and temperature distribu=ons 
within complex environments – with a Soil-Plant-Atmosphere Con=nuum (SPAC) model, which leverages the CFD 
outputs to more accurately assess plant thermal and water status. 

Materials and Methods  

The simula=on framework involves a fluid solver – comprising wind speed resolu=on, turbulence modelling, as well as 
air temperature and air specific humidity transports – a radia=on model, which resolves short-wave and long-wave 
radia=on, and the SPAC model from (Tuzet et al., 2003). This coupling is integrated in the highly parallelized CFD sofware 
code_saturne, which is well-suited to atmospheric applica=ons. The feasible spa=al scale ranges from 10m² to 5000m², 
and the temporal scale spans from short simula=ons las=ng a few minutes to extended simula=ons covering several 
days. 

The fluid solver and the radia=on model resolve 3D governing equa=ons on 3D meshes which aim at represen=ng specific 
situa=ons, for example trees blocking wind flow, or photovoltaic panels obstruc=ng sky exposure. Wind speed, air 
temperature, and specific humidity are derived using the Unsteady Reynolds-Average Navier-Stokes (U-RANS) equa=ons, 
while short-wave and long-wave radia=on are determined using the Discrete Ordinate Method (DOM). An innova=ve 
approach is employed to implicitly consider obstacles (e.g. hedgerows, trees, or photovoltaic panels) without 
represen=ng them directly in the mesh, which would otherwise be computa=onally demanding. As described by (Katul 
et al., 2004) for trees or (Vernier et al., 2025) for photovoltaic panels, obstacles’ impact on the microclimate can be 
modelled through source and sink terms directly implemented locally in the governing equa=ons. 

The considered SPAC model is composed of a plant layer assumed to be ver=cally homogeneous and located above a 
soil surface layer and a deep soil layer. It acts as the bo\om boundary condi=on for the fluid, temperature, and radia=on 
solvers by deriving plant-air and soil-air exchanges based on the local microclimate condi=ons retrieved from the CFD 
outcomes. The level of incident radia=on at the plant canopy top is given by the DOM radia=on model, then a Beer-
Lambert law drives the quan=ty of short-wave and long-wave radia=on absorbed by the plant layer and transmi\ed to 
the soil surface layer. Next, stomatal conductance is calculated: 𝑔!"! = 𝑔# + 𝑎𝐴𝑓$/(𝑐% − Γ), where 𝑔# is the minimum 
value of stomatal conductance at light compensa=on point, 𝑎 is an empirical coefficient, 𝑐% is the intercellular-space CO& 
concentra=on, and Γ is the CO& compensa=on point. It depends on short-wave radia=on and ambient temperature 



 
 

 

through the assimila=on rate 𝐴, which is derived from Farquhar’s photosynthesis model, and soil water content through 
the water stress factor 𝑓$. Together with plant aerodynamic and boundary layer resistances – which depend on 
simulated wind speed and turbulent fluxes at the plant canopy top – the stomatal conductance enables the es=ma=on 
of plant latent and sensible heat fluxes, and ul=mately, plant temperature and evapotranspira=on. 

Results and Discussion  

The simulated plant and soil energy and water exchanges are firstly evaluated in open-field condi=ons using data from 
ICOS, the Integrated Carbon Observa=on System: the overall RMSE, regarding energy exchanges, is lower than 40 W/m². 
Then, the es=ma=ons of solar and infrared radia=on, as well as plant temperature are compared to measurements 
conducted at an experimental agrivoltaics power plant (e.g. photovoltaic panels above crops): plant temperature rela=ve 
RMSE is lower than 15%. This demonstrates the capability of our model to accurately es=mate plant thermal and water 
states in complex environments.  

A key strength of the model lies in its ability to examine the impact of several obstacles, as exhibited in Figure 1, and so 
for many weather condi=ons: frost events, strong winds, heatwaves, or droughts. In this study, the impact of specific 
obstacles on plant temperature is inves=gated. While some obstacles – such as photovoltaic panels – would cast shadow, 
other obstacles – such as hedgerows – would a\enuate wind speed. These two microclimate altera=ons lead to a 
reduc=on of evapotranspira=on either by decreasing stomatal conductance, or by increasing aerodynamic and boundary 
layer resistances. This improved water conserva=on in the soil contributes to a greater plant resilience under dry 
condi=ons. A\enua=ng wind speed on sunny, yet cold, spring days can increase plant temperature by approxima=vely 
5°C, thereby boos=ng photosynthesis. On the contrary, under white frost condi=ons, it may exacerbate the risk of 
freezing, whereas photovoltaic panels can act as a radia=on shelter, helping to protect plants from frost damage. Another 
strength of the model is its small =me step, which enables capturing the temporal dynamics of stomatal conductance 
and photosynthesis rates in response to temporally varying microclimates. This approach not only considers light 
fluctua=ons – including the poten=al delay in plant response – but, also es=mates extreme plant temperatures and 
water stress, along with their impacts on photosynthesis. 

 

 
Figure 1. Simulated microclimate and the impact on plant temperature in complex environments: downstream a rectangular building (left), in an 

idealized agroforestry configuration (center), and within an agrivoltaic power plant (right). 

 



 
 

 

Conclusions 

The coupling of CFD, radia=on modelling, and a SPAC model enables simula=ng plant-air interac=ons in complex 
environments, notably those presen=ng spa=al heterogeneity caused by obstacles. This paves the way to a be\er 
understanding of the impact of obstacles on plant photosynthesis and abio=c stresses. For instance, this model can help 
op=mize agrivoltaic layouts by compensa=ng for the reduc=on in photosynthesis caused by shading through heat and 
water stress mi=ga=on. 
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Introduc$on 

The Decision Support System for Agrotechnology Transfer (DSSAT; Hoogenboom et al., 2024; 2019) is a leading crop 
modeling plarorm. However, despite its comprehensive set of models, it s=ll does not include a perennial fruit tree 
module. Previous studies indicate that the Cropping System Model (CSM)-CROPGRO (Boote et al., 2018) within DSSAT 
provides a suitable basis for perennial fruit tree simula=ons, inspiring the TREEGRO model (Morgan et al., 2003).  

The ini=al TREEGRO version, adapted from the CSM-CROPGRO-Tomato in DSSAT v4.4, due to its transplanted-fruit 
structure (Boote et al., 2012), showed poten=al but was never formally released. CROPGRO itself is a versa=le modeling 
framework, featuring hourly simula=ons of leaf-level photosynthesis, a detailed soil-plant nitrogen balance, and rou=nes 
for vegeta=ve growth and reproduc=ve development (Boote et al., 2018). 

This study aimed to adapt, calibrate, and evaluate CROPGRO to strengthen TREEGRO’s conceptual development, as an 
opportunity to improve simula=ons of fruit tree systems, par=cularly sweet orange. 

Materials and Methods 

Data from previously published experiments were used, including geographic loca=on, phenological dates, plan=ng 
density, scion/rootstock combina=ons, biomass data, weather and soil informa=on. Mul=ple gene=c parameters in the 
species and cul=var files were modified during the ini=al development process. Parameter values were set afer a 
comprehensive literature review, ensuring that each coefficient reflected specific physiological and developmental traits 
of the sweet orange species.  

Integra=on of the TREEGRO code into the latest DSSAT-CSM version required further modifica=ons. These changes were 
related to phenological rou=nes, adjustments to represent the perennial nature of the crop, and structural updates to 
ensure consistency. To evaluate the impact of each modifica=on, plant growth responses were tested by examining 
biomass alloca=on and developmental dynamics. 

Results and Discussion 

Afer model adapta=on and parameter calibra=on, TREEGRO successfully reproduced the pa\erns of plant development 
and biomass accumula=on across leaves, stems, and roots (Fig 1a). The simulated biomass par==oning among organs 
remained within the ranges reported in the literature (10-24% for leaves, 39-65% for stems and branches and 22-40% 
for roots). To es=mate fresh fruit weight, a specific equa=on for dry ma\er content was derived and integrated into 
TREEGRO.  

Fruit size, expressed as unit weight over =me, was reproduced by the model, capturing the temporal trajectory of fruit 
development (Fig 1b). Afer calibra=on of the cul=var file, the simulated fruit number aligned closely with experimental 
observa=ons, demonstra=ng the model’s ability to represent both fruit size and yield components. Consequently, total 
fruit yield was also reliably es=mated. However, further improvements are s=ll needed, par=cularly regarding the crop's 
response to drought stress and nutrient dynamics. 



 
 

 

 

Figure 1. Leaf (LWAD), stem (SWAD) and root (RWAD) dry weight (a) of sweet orange Hamlin. Mature fruits fresh (MTFPW) and dry weight (MTDPW) 
(b) of sweet orange Hamlin. 

Conclusions 

The TREEGRO model showed consistent and promising performance, especially following the refinements to the 
phenological rou=nes and the representa=on of perennial growth dynamics. It proved effec=ve in simula=ng key 
processes related to the growth, development, and yield of sweet orange. 
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Introduc$on 

Soybean is a high-protein, nitrogen-fixing legume with significant poten=al for sustainable agriculture in Europe 
(Rotundo et al., 2024). Despite its advantages, the EU27 remains heavily dependent on imports (16.5 Mt/year vs. 2.9 Mt 
produced locally in 2023; USDA, 2024). In France, soybean produc=on has quadrupled over the past 15 years (0.4 Mt in 
2024), and climate change is expected to further expand suitable cul=va=on areas northward (Nendel et al., 2023). 
Soybean phenology is primarily driven by photoperiod and temperature, with maturity groups (MGs) ranging from 
MG0000 to MGIII in Europe (Kurasch et al., 2017). To predict MG suitability under climate change, simple parsimonious 
model could be used, such as the Simple Phenology Algorithm (SPA), a model simula=ng key phenological stages based 
on few clima=c data (Schoving et al., 2020a). This kind of model could be easily used on large spa=al scale to predict the 
most adapted MG for a given loca=on. Then to predict agro-environmental impacts of these most adapted MG, more 
complex models are needed but are less easy to use since they required more data (climate, soil, management), such as 
the STICS soil-crop model (Brisson et al., 2008).  Both models need to predict soybean phenology for several MGs. Before 
being used at large scale, SPA required to extend the validity of stage-specific parameters across contrasted pedoclima=c 
condi=ons. STICS on the other hand underes=mated the photoperiod effect beyond the beginning of grain filling (R5), 
leading to biases in predic=ng physiological maturity (R7) and yield (Schoving et al., 2020b). 

Our final objec=ve is to determine the most suitable MGs for soybean in France in current and future climate and 
evaluate their agro-environmental impacts. To do so, we aimed at 1-Improving SPA predic=ons for emergence and 
phenology stages for mul=ple MGs using a large dataset from French field trials. 2-Enhancing the STICS phenology 
formalism to reduce predic=on drif for physiological maturity and improve yield simula=ons and 3- Using both models 
to predict soybean suitability and performances at high-resolu=on in France.  

Materials and Methods 

We first gathered a database for soybean with 84 sites all over France, 78 with only phenology measurements and 6 
with more complete data. For SPA, we developed a new module based on random forest to be\er predict emergence 
considering water availability through rainfall. SPA was then calibrated for seven maturity groups (MG0000 to MGII) 
using a two-stage Monte Carlo op=miza=on (2/3 training, 1/3 valida=on), adjus=ng cri=cal photoperiod, photoperiod 
sensi=vity, and thermal =me thresholds for flowering (R1) and harvest maturity (R8) stages. We used already known 
values for cardinal temperatures and op=mal photoperiod (Se=yono, 2007; Schoving et al., 2020a; Maury et al., 2023). 
For STICS, we modified the photoperiod formalism to extend sensi=vity un=l physiological maturity (R7), whereas it was 
previously limited to the seed-filling stage (R5) and recalibrated thermal =me parameters between R5 and R7 on R 
sofware using the Crop=mizR package (h\ps://s=csrpacks.github.io) on a subset of the SPA dataset, which includes 
ini=aliza=on, soil and management data required for STICS simula=ons. SPA simula=ons were run on 8,602 grid cells of 
8x8 km across France for three climate periods (2003–2023, 2024–2044, 2045–2065) under RCP8.5, with op=mal sowing 
dates determined annually based on temperature and water availability to determine the most suitable MG by grid cell 

https://sticsrpacks.github.io/


 
 

 

for each period, maximizing the length of R1-R8 phase. Based on these most suitable MGs, STICS will be run to assess 
their agro-environmental performances.  

Results and Discussion 

The random forest model significantly improved emergence prediction accuracy, reducing RMSE from 5.7 to 0.7 days. 
Calibration of SPA for MGs MG0000 to MGII — using an extensive French field trial dataset — yielded robust predictions 
for phenological stages: RMSE < 7 days for R1 and 12.7 days for R8. The modified STICS formalism shows better 
predictions of physiological maturity dates for the different MGs, making it usable to assess soybean performances 
across France. Simulated sowing date were credible under current climate conditions, and predicted earlier planting (up 
to 30 days) for future periods (2045–2065). By mid-century, MGII increased by +85% and early MGs (MG0, MG00) by 
+49% and +31%, respectively (Figure 1). This northward expansion underscores the need for varietal adaptation to 
earlier flowering and enhanced cold tolerance, offering opportunities for regional self-sufficiency and sustainable 
cropping system diversification. 
 

 
Figure 1. Projected expansion of soybean maturity groups in France between 2003–2023 and 2045–2065 under RCP8.5. 

Conclusions  

According to SPA predic=ons, late MGs will expand northward under climate change, making soybean cul=va=on feasible 
across nearly all of France by 2045–2065. These results highlight opportuni=es for increased self-sufficiency and 
integra=on of soybean into new cropping systems. The modifica=on of the STICS photoperiod sensi=vity formalism lays 
the groundwork for further improvements in yield elabora=on formalisms and model calibra=on using a large dataset 
with contrasted situa=ons. Future work will focus on integra=ng this process-based model to assess yield poten=al and 
environmental impacts of these land-use changes. 
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Introduc$on 

Pea (Pisum saXvum L.) is a C3 legume that is widely grown as a fall-sown crop in areas where winters are sufficiently 
mild, or as a spring-sown crop in areas with colder winters.  Its grain is high in protein and carbohydrate and is used for 
human consump=on and animal feed. The Decision Support System for Agrotechnology Transfer (DSSAT) sofware 
(Hoogenboom et al., 2019) has modules for many legume and cereal crops, but it is lacking one for pea.  The CROPGRO 
model within DSSAT is a generic mechanis=c process-based model that simulates leaf-level photosynthesis, growth and 
maintenance respira=on, explicit nodule growth and N-fixa=on, robust phenology, and par==oning.  Its FORTRAN source 
code remains constant for all crops, while species process sensi=vi=es and cul=var traits are read in as external files. 
With this template approach, DSSAT-CSM-CROPGRO has been successfully adapted for various grain legume species. The 
objec=ve of this paper is to describe the adapta=on of the CROPGRO model for winter pea, based on intensive growth 
and yield data collected at three sites over two seasons in Eastern OR, USA, with further evalua=on of winter pea trials 
in Pullman, WA, USA, and spring pea trials in Minot, ND, USA.  

Materials and Methods 

Experiments were conducted at three rainfed sites in Oregon during two seasons using three cul=vars (Granger, an 
Austrian winter pea, and two food-quality winter pea cul=vars Klondike and MiCa).  The soils are very deep loess loam, 
and crops were sown in 25-cm rows with no fer=liza=on in October.  Time-series growth, =ssue N concentra=ons, and 
phenology data were collected and final grain yield was taken in July.  At Pullman, WA, phenology and final grain yield 
were collected from 6 years of rainfed winter pea yield trials.  At Minot, ND, phenology and final grain yield were 
collected from 7 years of rainfed spring pea variety trials. 

Results and Discussion 

Adapta=on of the model followed the approach described by Boote et al. (2002) for faba bean, where literature 
informa=on (Adams & Cosner, 2025; Lake et al., 2021) was used to set cardinal temperatures for growth processes 
(Table 1), followed by calibra=on against growth analysis data.  Tissue composi=ons were set from literature and from 
observed =ssue N concentra=ons.  The ini=al template for winter pea was taken from the len=l model (Jing et al., 
2024), which showed promise for winter len=l at Pullman, WA.  Winter pea is a long-day species with cri=cal long day 
(CLDL = 17 h) and photoperiod sensi=vity (PPSEN = -0.070), along with EM-FL of 29.5 ptd (cv ‘Klondike’).  

 

Table 1. Cardinal temperatures (°C): base (Tb), first opVmum (Topt1), second 
opVmum (Topt2), and ceiling failure (Tceil) for development, photosynthesis, 
expansive growth, pod addiVon, single seed growth rate, nodule growth rate, 
and nitrogenase rate of CROPGRO-Winter Pea 

Growth process Tb Topt1 Topt2 Tceil 

VegetaVve development 3.0 25 30 40 

mailto:kjboote@ufl.edu


 
 

 

Reprod., Emerg to 1st Seed 2.0 22 26 45 

Reprod., 1st Seed to Maturity  2.0 22 35 45 

Leaf photosynthesis 2.0 30 31 40 

Leaf area & height expansion -0.8 17 17 ----1 

Pod and seed addiVon 6.0 16 24 34 

Seed growth rate 3.0 18 21 36 

Nodule growth rate -1.0 13 25 40 

Nitrogenase (Nfix) rate -3.0 11 25 40 

1no ceiling temperature used, no reducVon at high temperature 

Parameter modifica=ons included increased rate of roo=ng depth, lower cardinal temperatures for nodule growth/N-
fixa=on, and modified par==oning among leaf, stem, and root =ssues.  Cardinal base temperatures were 3, 2, 2, and 3 
°C for rate of main stem leaf appearance, reproduc=ve development, leaf photosynthesis, and seed growth rate, 
respec=vely (Table 1).  Increased rate of roo=ng depth was needed to reproduce observed deep soil water extrac=on to 
2 m, along with sustained observed plant growth under rainfed condi=ons.  Slow rate of leaf appearance, rela=vely low 
par==oning to leaf, and slow hedgerow canopy height-width expansion were needed during winter months to reproduce 
the slow crop biomass growth during winter months.  Model calibra=ons were successful for three cul=vars across two 
seasons at three sites, with good performance sta=s=cs.  Growth during the winter was slow but was followed by rapid 
growth in spring as temperatures warmed up, as shown by leaf mass over =me for cv ‘MiCa’ for five site-years (Figure 
1).  The total life cycle was more than 250 days, with rapid reproduc=ve growth during the last 30-40 days associated 
with rapid leaf loss and rapid increase in pod harvest index (Figure 1).  Evalua=ons showed good performance for 
phenology predic=on and yield in rainfed trials of winter pea in Pullman, WA and spring pea in Minot, ND, where careful 
a\en=on was paid to establishing ini=al condi=ons for soil water.  This ofen required running in crop sequence-rota=on 
following a prior wheat crop (typical for these sites) to deplete and set ini=al soil water.  Only minor cul=var phenology 
parameter modifica=ons were needed for spring pea cul=vars, so the CROPGRO-Pea model appears to work well for 
winter and spring pea.  The CSM-CROPGRO-Pea model will be included in a future DSSAT release. 
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Figure 1.  Simulated leaf mass (A) and pod harvest index (B) over =me for MiCa winter pea cul=var for 5 site-year 
treatments. 

Conclusions 

CROPGRO was successfully adapted for simula=ng winter and spring field peas.  Rela=vely low cardinal temperatures for 
processes were required to simulate growth over winter seasons. Roo=ng to 2 m was needed to mimic observed deep 
soil water extrac=on for rainfed simula=ons.  Evalua=ons showed good performance against trials of winter pea in 
Pullman, WA and spring pea in Minot, ND.  CROPGRO-Pea will be included in a future release of DSSAT.   
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Introduc$on  

One of the advantages of sugarcane (Saccharum spp.) is its excep=onal ability to convert sunlight into biomass, with 
reported radia=on use efficiency (RUE) values among the highest of all major crops (Sinclair and Muchow, 1999). RUE is 
a cri=cal emergent trait in crop physiology and a central parameter in most dynamic sugarcane simula=on models. 
However, debate persists over whether RUE is stable across varie=es and growing condi=ons, par=cularly when 
dis=nguishing between apparent RUE (RUEA) and maximum seasonal RUE (RUEMAX) (Jones et al., 2019). C4 species such 
as sugarcane are well adapted to high temperatures (>25°C), but it is also acknowledged that these species are 
significantly sensi=ve to varia=ons in air temperature within the 20–30°C range. This is par=cularly relevant as climate 
change may shif growing environments closer to or beyond these thresholds. Current sugarcane models differ 
substan=ally in their representa=on of RUEMAX temperature response (Jones et al., 2019). Such structural differences can 
strongly influence biomass predic=ons under future climate scenarios. In this context, the Interna=onal Consor=um for 
Sugarcane Modelling undertook a coordinated effort to evaluate temperature response formalisms using a global 
dataset to refine model calibra=on and improve varietal sensi=vity representa=on (Chris=na et al., 2025). 

Materials and Methods  

We analyzed an interna=onal dataset including field experiments from six countries (Brazil, South Africa, United States, 
Zimbabwe, Argen=na, and La Réunion) covering more than 40 varie=es. We es=mated apparent RUE (RUEA) and 
maximum RUE (RUEMAX) from observed biomass accumula=on and intercepted radia=on. We then parameterized 
different temperature response func=ons for RUEMAX, which is currently used in APSIM-Sugar, DSSAT-Canegro, MOSICAS, 
and other emerging approaches. Model predic=ons of RUEA were evaluated against independent observa=ons in 
different countries, and the implica=ons of the choice of model formalism or parameteriza=on regarding projec=on 
under climate change were assessed. 

 



 
 

 

Results and Discussion  

Our results confirmed that RUEMAX was stable across varie=es (as suggested by Dias et al., 2021), while RUEA exhibited 
significant varia=on driven by both environmental condi=ons and genotype (Chris=na et al., 2025). Across all sites, 
RUEMAX showed a consistent temperature op=mum between 30–33 °C depending on formalism (Figure 1). Simula=ons 
highlighted substan=al differences in the ability of exis=ng model formalisms to reproduce observed pa\erns, with direct 
consequences for projected biomass accumula=on under current and future climates. 

Even under apparent op=mal growing condi=ons, our analyses suggested a decline of RUE with crop age, which depends 
on the variety, a phenomenon insufficiently represented in current models. Several hypotheses may explain this decline 
as part of the “reduced growth phenomenon” (Park et al., 2005), including reduc=ons in leaf nitrogen content, changes 
in sugar par==oning, increased maintenance respira=on, or structural effects such as lodging. These hypotheses are the 
focus of ongoing work within the consor=um, and the way crop models represent these formalisms will be evaluated 
against experimental data. 

 

 
Figure 1. Change in normalized maximum radiation use efficiency (RUEMAX) with mean air temperature depending on formalism (ApsimCanegro, 
Johnson, Mosicas, and Wang-Engel) based on default parameters values (a) and quantile regression (b). Details on methodology is available in 

Christina et al. (2025). 

Conclusions  

Accurate representa=on of RUE temperature dependence is essen=al for reliable sugarcane biomass projec=ons under 
climate change. Current formalisms differ substan=ally in their ability to capture observed dynamics, emphasizing the 
need for refined parameteriza=on and structure. Current work is extending this analysis to age-related effects on RUE, 
which may further improve crop model projec=ons under climate change. Within the interna=onal consor=um, we have 
also formulated recommenda=ons for calibra=on strategy in sugarcane crop models and varietal-sensi=vity 
improvements, to guide future model development and applica=on. 
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Introduc$on 

Radish (Raphanus saXvus L.) is an edible root and one of the most consumed vegetables in the Brassicaceae family 
worldwide. As an integral part of numerous Korean dishes, its year-round availability is crucial to guarantee a steady 
supply to domes=c consumers (Pusik and Pusik, 2025). 

Es=ma=ng radish growth and yield helps op=mize crop management by tes=ng scenarios for current and new 
environments, suppor=ng farmers’ decisions. A systems approach with dynamic crop models can complement field 
research, reduce the need for costly new trials, and improve management strategies. 

Crop models such as CROPGRO within the Decision Support System for Agrotechnology Transfer - Cropping System 
Model (DSSAT-CSM) have a mechanis=c approach and a generic feature that enables them to be adapted for new species 
(Hoogenboom et al., 2019). In this context, the main goal of this study was to develop a radish model for DSSAT-CSM by 
adap=ng the CROPGRO model using field trial data conducted in the Republic of Korea by the Rural Development 
Administra=on. 

Materials and Methods 

We used experimental data collected from two seasons (2023-2024). The field trials were carried out at the Na=onal 
Ins=tute of Hor=cultural and Herbal Science facility in Wanju-gun, Jeonbuk, Republic of Korea, using the Cheongdu-gold 
variety. The radish plants were distributed in rows and irrigated. Daily weather data were obtained from a nearby 
automated weather sta=on. 

The crop growth data consisted of measurements of root and above-ground biomass dry weight (kg ha-1), Leaf Area 
Index (LAI), number of leaves, leaf N concentra=on (%), canopy height and width (m), and roo=ng depth (m). 

The CROPGRO-Soybean model in DSSAT v4.8.5 (Hoogenboom et al., 2024) was used as a template to start the 
parameteriza=on of key gene=c coefficients for radish based on a thorough literature review and field observa=ons. For 
the model adapta=on, we modified the three files related to genotypic features, i.e., cul=var, ecotype, and species files, 
in DSSAT. 

The model’s performance was assessed by calcula=ng the root mean square error (RMSE) and the Willmo\ index of 
agreement (d-stat). 

Results and Discussion 

The CROPGRO model demonstrated sa=sfactory ability in simula=ng radish growth and yield under op=mal condi=ons. 
When analyzing the 2-year observed data, the model provided simula=ons of above-ground biomass with high accuracy 
(RMSE = 108 kg ha-1) and precision (d-stat = 0.97). Similar responses were observed for root mass simula=ons (RMSE: 
362 kg ha-1, and d-stat = 0.96) (Fig. 1). Also, the model was able to reproduce the radish responses to the environmental 
variability from year to year. 



 
 

 

 

Figure 1. Simulated (lines) and observed (symbols) radish root mass and above-ground biomass (kg ha-1) for the 2023 (left panel) and 2024 (right 
panel) growing seasons. Error bars show the standard deviation across the replicates. 

Conclusions 

The parametriza=on of the CROPGRO model shows promising results in simula=ng radish growth and yield, 
which will enable the introduc=on of this crop to DSSAT. Addi=onally, further tests will be conducted for evalua=ng the 
effect of water and nitrogen on radish. 
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Introduc$on  

The growing demand for sustainable agriculture has renewed interest in cereal–grain legume intercropping, thanks to 
its poten=al to reduce chemical inputs, enhance land-use efficiency, and deliver mul=ple ecosystem services (Bedoussac 
et al., 2015). However, predic=ng the performance of intercropping systems remains challenging due to complex 
interac=ons among plant species, environmental condi=ons, and management prac=ces. While process-based agro-
ecosystem models are valuable for exploring these interac=ons throughout the growing season, few exis=ng models are 
capable of accurately simula=ng intercropping dynamics (Vezy et al., 2023).  

Materials and Methods  

This study presents and evaluates a new modeling framework for bi-specific intercropping systems, adapted from the 
WeedyCoSMo approach originally developed for simula=ng crop–weed interac=ons (Movedi et al., 2022). The 
proposed formalism is simple, generic, and designed to be easily integrated into exis=ng dynamic crop models. We 
demonstrate its implementa=on in a modified version of the MONICA crop model (Nendel et al., 2011), in which two 
crop modules interact dynamically through a shared soil module. The framework simulates key physiological and 
ecological processes—including phenology, biomass accumula=on, yield forma=on, light intercep=on, and carbon and 
nutrient cycling—while accoun=ng for interspecific compe==on for light, water, and nitrogen. It dynamically predicts 
both species-specific and community-level state and rate variables and quan=fies each species’ suitability under 
compe==ve condi=ons via their rela=ve abundance (Figure 1). Data for calibra=on and evalua=on were collected from 
literature and dedicated intercropping field trials conducted in Italy and Germany. These datasets included various 
cereal–grain legume combina=ons (durum wheat, common wheat and oat intercropped with len=l and chickpea), 
spanning a wide range of pedo-clima=c condi=ons, experimental designs, and both spring and winter cropping 
seasons. Variables measured included above- and below-ground biomass, grain yield, plant =ssue nitrogen content, 
plant height, leaf area index, and soil nitrogen and moisture. The MONICA model had already been parameterized for 
most of the crops involved; however, sole crop data from the dataset were used to refine these parameters and to 
calibrate the few addi=onal ones required for WeedyCoSMo. Data from intercropped plots were exclusively used to 
evaluate the model framework. 

Results and Discussion 

Preliminary results suggest that the model performs robustly across a diversity of environments and cropping systems. 
The model reproduced biomass-related and other intercrop variables from field experiments, achieving nRMSE values 
of 15–60% and a Willmo\ index of agreement between 0.29 and 0.85. Despite requiring rela=vely few addi=onal 
parameters, its predic=ve accuracy is comparable to that of more complex models. The framework effec=vely captures 
key species differences and crop combina=ons, and is capable of reproducing both compe==ve (one species 
domina=ng over the other) and facilita=ve interac=ons (e.g., nitrogen fixa=on) between intercropped species. 



 
 

 

 
Figure 1. General concept and functioning of the modeling framework 

Conclusions  

In summary, this modeling framework provides a promising tool for the design and virtual pre-evalua=on of sustainable, 
locally adapted intercropping strategies. By enabling in silico experimenta=on, it contributes to agroecological transi=on 
efforts and enhances the capacity to develop more resilient farming systems. 
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Introduc$on 

Tradi=onal crop models are based on fixed mathema=cal equa=ons and require manual modifica=on, which leads to 
inefficient data use and slow improvement. The rise of data science and AI is shifing mechanism-centric scien=fic fields 
toward data-centric approaches. Our previously developed Deep Learning Crop Growth Model (DeepCGM) is a hybrid 
model that leverages both process-based and data-driven approaches (Han et al. 2025). However, its architecture 
prevents it from being adapted to other cul=vars. This study proposed DeepCGM-generic, which introduces a module 
for learning crop a\ributes and the a phenology module. The model is evaluated on a synthe=c dataset. 

Materials and Methods 

The synthe$c dataset containing 900 cul=vars × 10 seasons data was generated by PCSE model. The inputs are cul=var 
parameters, weather data, and management data. The output is the =me-series crop states. Cul=vars are defined by 
using different values of eight cul=var parameters. 

DeepCGM features a Recurrent Neural Network architecture, controlling informa=on flow with a mass-conserving gated 
unit. It overcomes the overfi?ng problem caused by sparse observa=on data by leveraging an architecture and training 
strategies informed by principles of plant physiology and physics. 

DeepCGM-generic aims to overcome cul=var-adapta=on limita=ons. Our approach integrates a Hypernet (David et al. 
2016) with Low-Rank Adapta=on (Hu et al. 2021) modules to learn and represent cul=var parameters (Figure 1a). 
Another advancement is the new phenology module that replaces the Growing Degree Day method with an effec=ve 
=me calcula=on. A ga=ng unit processes various factors into a daily effec=veness coefficient to determine phenology 
increment.  

 

Figure 1. (a) The framework of DeepCGM-generic. (b) and (c) are the simulations of two new cultivars by different models 



 
 

 

Results and Discussion 

A experiment was designed with 36 scenarios by varying the number of cultivars (4 levels), observation interval (3 
levels), and observation noise (3 levels) (Table1). A same test set was used across all scenarios. A weighted normalized 
mean square error loss is used as evaluation metrics. The different time-series prediction pattern shows that DeepCGM 
can identify different cultivars (Figure 1b, c). In addition to overcoming the overfitting caused by data sparsity, DeepCGM 
also achieves higher simulation accuracy in new cultivar, as shown in the LAI simulation results for cultivar A. Compared 
to the LSTM model, DeepCGM requires less data and achieves superior performance in most scenarios (Table 1). 

Table 1. Test set loss (values × 104). Interval, cultivar, and noise denote the pretraining configurations. 

Interval 40 20 10 

CulVvar 10 50 200 800 10 50 200 800 10 50 200 800 

ObservaVon (103) 0.5 2.4 9.6 38.4 1 4.8 19.2 76.8 1.9 9.6 38.4 153.6 

LSTM 

 N
oise 

0.05 358 201 89 93 311 184 68 60 216 136 61 71 

0.1 375 220 100 71 328 200 76 68 234 164 61 62 

0.2 370 242 134 80 326 219 101 78 283 187 85 63 

DeepCGM 

-generic 

0.05 171 112 81 57 154 106 76 57 149 96 77 60 

0.1 188 141 88 62 172 108 81 60 165 107 82 57 

0.2 247 143 99 67 202 115 83 65 196 109 88 61 

Conclusions  

This work introduces DeepCGM-generic, an enhanced DeepCGM model equipped with an architecture for cul=var 
adapta=on and a phenology simula=on module, which outperforms purely data-driven models and requires less data 
when adap=ng to new cul=vars.  
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Introduction  

Simulation models were tools for agricultural research, providing critical insights into complex crop-soil interactions and 
informing data-driven decisions around sustainable cropping system management. However, models remained 
underutilized due to the limited availability of standardized and comprehensive experimental datasets suitable for 
model development, parameterization and evaluation. In crop research papers, authors typically included content to 
describe how experiments were conducted as well as results. However, it largely existed in unstructured prose, 
summary tables and figures. Development of Large Language Models enabled efficient extraction of structured, 
actionable data from unstructured text by non-experts (Gartlehner et al., 2024; Polak and Morgan, 2024).  
Materials and Methods  

In this study, we introduce a novel automated workflow to address data limitations by systematically extracting and 
harmonizing data from published literature (Fig. 1). Our approach comprises five key steps: (1) converting PDF 
documents to Markdown files to enable efficient text parsing and tabular data extraction, (2) isolating the materials and 
methods sections to capture essential experimental context, (3) mapping text and table outputs to International 
Consortium for Agricultural Systems Applications (ICASA) variables using a large language model, (4) fine-tuning the 
large language model based on training datasets extracted manually, and (5) establishing connections between related 
publications to enhance data completeness and contextual understanding.  

 



 
 

 

Figure 1. An automated workflow that processes data, incorporates a fine-tuned model, and enables seamless integration for agricultural model 
applications. 
Results and Discussion 

The workflow is both fast and accurate, effectively extracting ICASA variables from various publications. 
Achieving a balance between consistency and accuracy remains a major challenge. To address incomplete datasets 
issues, we plan to link the extracted experimental data with spatial soil, weather, crop and crop management datasets, 
based on the geographical information inside the PDFs.  

Conclusions 

By improving the findability and interoperability of model inputs, this research demonstrates the feasibility of 
using AI-driven tools for extrac=ng structured data from unstructured scien=fic literature.  
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Introduc$on 

Regional modeling depends on robust calibra=on, yet it is ofen limited by inconsistent, inaccessible, or sparse datasets. 
The increasing availability of public agronomic data offers new opportuni=es for model calibra=on, especially for 
resource-limited or regional-scale projects. While manual trial-and-error calibra=on remains common, recent research 
has advanced harmonized workflows, par=cularly through the Agricultural Modeling Intercomparison Project (AgMIP). 
The crop=mizR R package (Buis et al., 2024) has standardized calibra=on by providing an accessible workflow for 
parameter es=ma=on, automa=cally op=mizing results based on observa=onal data and user-defined parameters. 

Process-based models like APSIM (Agricultural Produc=on Systems sIMulator) are widely used for agricultural impact 
assessments, with APSIM Next Genera=on (APSIMx) offering improved computa=onal performance and flexibility. 
However, validated crop parameters for Central European condi=ons are lacking in APSIMx, and previous calibra=ons—
primarily with APSIM classic—have ofen been site-specific and manual, limi=ng reproducibility. The resul=ng APSIM 
classic parameters may be overly tailored to local condi=ons and cannot be directly transferred to APSIMx due to 
structural model changes. 

To avoid overfi?ng, calibra=on should incorporate data from mul=ple sites with contras=ng condi=ons. The increasing 
availability of public German agricultural datasets offers opportuni=es for standardized, transparent model calibra=on. 
While workflows for APSIM classic are well documented, a workflow for APSIMx using public datasets has not been 
previously described. This study addresses these limita=ons by presen=ng a reproducible calibra=on workflow using the 
crop=mizR for German key crops - winter wheat, silage maize, winter oilseed rape and spring barley - in APSIMx, 
leveraging only public datasets. It demonstrates the usefulness of public data for modeling and supports transparent, 
policy-relevant agricultural research. 

 

Materials and Methods 

To ensure not only reproducibility but also spa=al transferability, we relied exclusively on publicly available datasets that 
cover all of Germany for model input, calibra=on, and valida=on. Using the crop=mizR (Buis et al., 2024), we first 
calibrated phenology and then yields at two contras=ng loca=ons in Schleswig-Holstein, Northern Germany, and Saxony, 
Central Germany for the years 2010-2023. As observa=onal input we used phenological observa=on data (DWD, 2024) 
and average district-level dry ma\er yields (Duden et al., 2023), which were complemented by 2023 yield data from the 
federal sta=s=cs office (Sta=s=sche Ämter des Bundes und der Länder, 2024). Then, we validated the crop parameters 
to evaluate the robustness of the parameters at two addi=onal loca=ons in the same states, but with differing 
pedoclima=c condi=ons. Weather data was extracted from gridded weather files for the phenological observa=on sta=on 



 
 

 

loca=ons (DWD, upon request). As soil input we used chemical and physical soil profile core data of soil types typically 
under crop produc=on in the regions from the na=onal German soil inventory (Poeplau et al., 2020). Regionally typical 
management assump=ons were made for each crop in consulta=on with experts and federal state recommenda=ons. 
For the parameter ranges used in the calibra=on, i.a. regional temperature sum quan=les for crop-specific phenological 
phases were used from Möller and Gerstmann (2023) and Möller et al. (2020). 

 

Results and Discussion 

Both phenology and yield predic=ons were improved for the four crops compared to ini=al cul=vars, using the calibrated 
parameters at the calibra=on sites and at valida=on sites. The RMSE and nRMSE of all phenological phases at the two 
calibra=on sites ranged from 7.7 days and 13 % for silage maize to 18.8 days and 21 % for spring barley afer calibra=on, 
respec=vely (Heiß et al., submi\ed). Yield predic=ons for all crops could be improved overall, but some=mes at the cost 
of one predic=on accuracy at one of the calibra=on or valida=on sites due to the strong pedoclima=c differences 
between the sites. Compared to other calibra=on studies with either very detailed field experiments over ofen shorter 
=me periods or large-scale calibra=on studies the yield predic=on performed well with the calibrated parameters, 
especially considering the uncertain=es related to the data sets used. This could also explain why interannual yield 
variability is captured rather poorly. Nevertheless, for regional modelling studies the performance may s=ll be sufficient, 
as ofen average yields are used for certain periods. (e.g. Bonato et al., 2025).  

 

Conclusion 

This study demonstrated successful calibra=on of four key crops, winter wheat, silage maize, winter oilseed rape and 
spring barley, in APSIMx using exclusively public datasets, despite inherent data uncertain=es. The calibrated parameters 
improved both phenology and yield predic=ons across contras=ng pedoclima=c condi=ons, achieving accuracy levels 
comparable to experimental calibra=on studies. While interannual yield variability was not fully captured, the achieved 
accuracy may be sufficient for many regional modeling objec=ves. The automated calibra=on workflow using crop=mizR, 
combined with public data, effec=vely lowered barriers for crop model adop=on, par=cularly for resource-limited 
projects. By making all workflows and parameters publicly available, this study promotes FAIR (Findable, Accessible, 
Interoperable and Reproducible) modeling prac=ces. Future work could build on these generic crop parameters through 
sensi=vity analyses and richer observa=onal datasets. Overall, this workflow demonstrates the poten=al of public data 
for robust APSIMx calibra=on, advancing model reliability for sustainable agricultural management in Central Europe 
and beyond. 
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Introduc$on 
Soybean is a major leguminous crop with unique biological nitrogen (N) fixation capabilities through symbiosis with 
rhizobia. Because it usually requires little or no nitrogen fertilizer, it is a beneficial component of crop rotations aimed at 
reducing dependence on synthetic nitrogen fertilizers. Understanding the net N contributions from soybean to the system 
or partial N balance is vital for optimizing grain crop rotations and minimizing environmental losses such as nitrate 
leaching and nitrous oxide emissions. Process-based crop models help simulate these dynamics under varying 
environments and management, but simulations differ due to input, parameter, and structural uncertainties. Multi-model 
sensitivity analyses can be helpful to improve accuracy, capture climate change effects, and inform sustainable nitrogen 
management. The objective of this study is to investigate the uncertainties of commonly used soybean simulation models 
in estimating partial nitrogen balance, including the impacts of climate change factors such as elevated CO₂ and 
temperature on N balance components. 

Materials and Methods 
A group of nine process-based crop models were calibrated using multi-year experimental data from five locations (Azul, 
Argentina; Brasilia, Brazil; Auzeville, France; and Ames, Iowa and Fayetteville, AR in the U.S.) (Kothari et al., 2022). 
All locations included detailed in-season growth data, in addition to detailed crop N data from two of the locations (France 
and Iowa). The calibration was performed in two stages: Blind (phenology only) and Full (crop growth and N, yield, and 
soil moisture data). Following calibration, 30-year sensitivity analyses (1980–2009) tested responses to five temperature 
scenarios (−3 to +9 °C), five [CO₂] levels (360–720 ppm), and to irrigated vs. rainfed conditions. Partial nitrogen balance 
was calculated as: Fixed N - Grain N - Leached N - Volatilized N - Denitrified N and nitrogen harvest index (NHI) as: 
GrainN / ShootN. Model outputs for different components of the N balance, partial N balance, and NHI were analyzed 
across sites and climate change scenarios.	
Results and Discussion 
Soybean models showed large variability in simulated partial N balance, ranging from strongly positive to negative 
(Figure 1), associated to major uncertainties in biological nitrogen fixation (BNF) and N loss processes (not shown). Most 
models simulated negative partial N balance due to high grain N export, highlighting risks of soil N depletion, except for 
LINTUL and DSSAT-EBL. The variation among the soybean models simulating N balance components and the 
derived partial N balance can be attributed to structural di8erences among models, such as how models handled 
leaf senescence and N mobilization from vegetative N pools. Results indicate that while current soybean models 
provide reasonable estimates of NHI, substantial uncertainty persists in the simulation of partial N balance, particularly 
under variable water regimes. Results evaluating the multiple soybean models under variable temperature and [CO₂] 
scenarios will be also presented. 



 
 

 

 
 
Figure 1: ParTal nitrogen balance (top row) and nitrogen harvest index (bo[om row) simulated by nine soybean models under irrigated (leW panels) 
and rainfed (right panels) condiTons. Each boxplot represents the distribuTon of model outputs across experimental sites and treatments. Gray and 
blue bars depict the two calibraTon strategies: Blind and Full. PosiTve parTal N balance values indicate greater N inputs via biological fixaTon relaTve 
to losses and grain export, while negaTve values suggest potenTal soil N depleTon. Differences among models reflect variaTon in their representaTon 
of biological nitrogen fixaTon, N allocaTon, and loss pathways. 

 

 
Conclusions 
Soybean models reliably predict nitrogen harvest index, but estimates of soil nitrogen balance vary widely irrespective of 
the water conditions. Improving how models handle nitrogen fixation and losses is important for sustainable farming. 
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Introduc$on  

Genotype-to-phenotype predic=on in crops requires quan=fying both physiological responses to environmental drivers 
and their underlying gene=c controls. Flowering =me is a cri=cal trait for aligning cereal genotypes with target 
environments, yet current molecular models insufficiently incorporate environmental signals, while physiological models 
struggle to capture the interac=ons among vernaliza=on, photoperiod, and temperature across contras=ng 
environments. We address this challenge by integra=ng molecular insights into physiology models through a redesigned 
phenology module in the APSIM Next Genera=on Wheat model. 

Materials and Methods  

We developed the Cereal Anthesis Molecular Phenology (CAMP) model (Wang et al., 2025), building on a previous 
hypothe=cal prototype (Brown et al., 2013), to incorporate the regulatory roles of three major virtual genes—Vrn1, Vrn2, 
and Vrn3—in flowering physiology of cereal crops (e.g. wheat and barley). It simulates phenological development based 
on the expression of these genes in response to temperature and photoperiod (Fig. 1a). The enhanced molecular–
physiology linkage enables a simplified phenotyping approach, using mainstem final leaf numbers of wheat and barley 
grown under controlled condi=ons, to characterize new genotypes and define model parameters for the earliness per 
se (MinLN), photoperiod sensi=vity (PpLN), vernaliza=on sensi=vity (CvLN), and photoperiod x vernaliza=on interac=on 
(PvLN) (Fig. 1b). The controlled environments consist of four treatments: cold-vernalized plants growing under warm 
temperature (>20oC) with 16hr (CL) or 8hr photoperiod (CS), non-vernalized plants growing under warm temperature 
(>20oC) with 16hr (WL) or 8hr photoperiod (WS) (Fig. 1b). The new model was implemented in the APSIM Next 
Genera=on (APSIM NG) framework (Holzworth et al, 2014), parameterized for wheat and tested against field data across 
diverse environments, covering four sites in Australia and across two years (2020-2021), each year with 8 =mes of sowing 
ranged from 2 March to 16 July (Fig. 1c). 

Results and Discussion  

The new phenology model (CAMP) was able to capture 88% of the varia=ons in observed flowering dates, predicted 
flowering =me within 4–7 days across 64 gene=cally diverse wheat cul=vars grown under contras=ng environments (Fig. 
1c). There were large differences between replicates of the observed flowering dates at early =mes of sowing, indica=ng 
significant spa=al varia=on, which accounted for about half of the predic=on errors (RMSE in Fig. 1c). The largest errors 
are with the early sowing dates. Considering the ‘commercially relevant’ sowing dates from mid-April onwards, the 
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predic=on errors are reduced by nearly half to around 4 days. The leaf-number phenotyping method reduced 
phenotyping =me by more than 80%, offering a prac=cal alterna=ve to resource-intensive field trials. These results 
demonstrate the model’s performance to predict flowering =me of diverse wheat genotypes across contras=ng 
environments. 

The CAMP model enables simplified phenotyping for cul=var characteriza=on and model parameteriza=on, which 
involves simply measuring the final leaf number (FLN) and anthesis date on the mainstem of wheat grown in controlled 
environments that are designed to ensure complete satura=on or depriva=on of photoperiod and vernaliza=on effects 
using factorial combina=ons of short or long photoperiod together with cold or warm temperature treatments during 
emergence. These data allow the simula=on of expression rates of Vrn1, Vrn2 and Vrn3 and other parameters in the 
model. This simplifies field observa=ons and has poten=al to reduce the substan=al costs of field experiments used to 
derive cul=var parameters.  

The enhanced molecular–physiology linkage makes it possible to more accurately predict flowering =me directly from 
genotypic data (e.g., SNPs), poten=ally elimina=ng the need for costly field experiments. The new model is currently 
being used to combine genotypic and phenotypic data from wheat for the development of a genomic predic=on model 
that predicts CAMP model parameters using SNPs. This will enable flowering =me predic=ons directly using genotypic 
data (SNPs), represen=ng a step change in molecular-physiological modeling, suppor=ng faster deployment of new 
cul=vars and more effec=ve design of wheat for future climates. The CAMP model is now being used to develop a 
prototype Flowering Calculator to op=mize sowing programs for wheat and barley across Australia so that crops flower 
at op=mal =me to minimize water, frost and heat stresses (h\ps://www.cropflowering.com.au/). 

 

 

Figure 1. The simplified diagram of the CAMP model in APSIM Next Generation, showing the stages where it incorporates the regulatory roles of 
three virtual genes—Vrn1, Vrn2, and Vrn3 (a), the new model parameters derived based on final leaf mumber on main stem using data from the 

controlled environment experiments (b), and the model performance for simulatiing flowering time of wheat across environments in Australia (c). 
In (b):  MinLN - the earliness per se, PpLN - photoperiod sensitivity, CvLN - vernalization sensitivity, PvLN - photoperiod x vernalization interaction. 

Conclusions  

Integra=on of molecular understanding into a physiologically based crop model helps to disentangle the complex 
interac=ons of temperature and photoperiod as they impact on phenological development of cereal crops towards 
flowering. The enhanced molecular–physiology linkage enables simplified and be\er phenotyping strategies, reduces 
the experimental costs, and increases the predic=on accuracy, facilita=ng the predic=on of flowering =me directly from 
genotypic data.  
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Introduc$on 

Effec=ve parameter es=ma=on and model evalua=on remain major challenges in the crop modeling community. Un=l 
recently, there has been neither consensus on standardized methods or protocols, nor widely available sofware tools 
to facilitate their implementa=on and tes=ng across different crop models. In response, the AgMIP Calibra=on ac=vity 
was launched to test and compare calibra=on procedures across a broad range of crop models with the ul=mate goal of 
establishing shared guidelines and protocols, fostering consensus on model calibra=on and evalua=on prac=ces. To 
support this effort, the Crop=mizR (Buis et al., 2024) and CroPlotR (Vezy et al., 2024) R packages provide dedicated 
sofware solu=ons for efficient implementa=on, comparison, and automa=on of parameter es=ma=on and evalua=on 
workflows for crop models (Figure 1).  

Key features of Crop$mizR and CroPlotRw 

Crop=mizR provides frequen=st (e.g., Nelder-Mead simplex) and Bayesian (e.g., DREAM-zs) algorithms for parameter 
es=ma=on via external packages like nloptr and BayesianTools. Key features include the ability to select among various 
goodness-of-fit criteria, fine-tune algorithm op=ons, define parameter constraints (equality or inequality), apply 
transforma=ons to variables, and automate selec=on of parameters to es=mate. CroPlotR complements Crop=mizR by 
offering tools for analyzing and visualizing model outputs, producing dynamics and sca\er plots to compare simula=ons 
and observa=ons, compu=ng 32 sta=s=cal indicators, and suppor=ng group comparisons (e.g. model versions or 
parameteriza=ons).  

Recent developments currently available in a beta version under tes=ng have further expanded these capabili=es with 
the addi=on of a flexible mul=-step parameter es=ma=on feature. This allows automa=on of successive es=ma=on steps, 
with full control over the specifica=on of observa=ons, parameters, methods, and op=ons used at each stage. They also 
include a full integra=on of the AgMIP calibra=on protocol (Wallach et al., 2024, 2025) through a dedicated func=on that 
automates the en=re protocol workflow and generates the associated diagnos=cs. 

Connec$on with crop models 

Both packages rely on a generic interface that connects crop models to es=ma=on and evalua=on workflows through 
model wrappers (Figure 1). These R func=ons enable simula=ons to be run by passing parameter values to crop models 
and returning model results in a standardized format. A wrapper must be specifically developed for each model. These 
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wrappers can interface models wri\en in most programming languages (e.g., Fortran, C++, C#) through direct calls, 
shared libraries, or system calls (using e.g. `system2`). This flexibility has allowed Crop=mizR and CroPlotR to be applied 
to over 15 crop models or plarorms, including STICS, APSIM Next Gen. and DSSAT. 

 

Figure 1. A flexible interface for crop model calibration and evaluation: the CroptimizR and CroPlotR approach. CroptimizR connects crop models or 
platforms (e.g., STICS, DSSAT, Apsim, SQ2) with parameter estimation packages (BayesianTools, nloptr) through the development of wrappers, 
while providing specific functionalities tailored to crop modeling. CroPlotR complements it by offering visualization, diagnostics, and statistical 

analysis of model performance. 

Availability and use in the community 

These open-source packages are freely available on GitHub. Their versa=lity and performance have been demonstrated 
in several studies (e.g. Wang et al, 2025). Within the AgMIP Calibra=on project, they helped implement calibra=on 
protocols, facilita=ng their applica=on by modeling groups and enabling rigorous comparisons across a large ensemble 
of models (Wallach et al., 2024, 2025). 
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Introduc$on  

Crop model parameters are ofen not directly measurable and must be es=mated through calibra=on procedures. A wide 
range of strategies is used in prac=ce, and calibra=on choices strongly affect model results (Wallach et al., 2021). The 
dataset used is par=cularly cri=cal: using contras=ng environments and frequent observa=ons tends to improve 
calibra=on results (Coudron et al., 2021). In this context, high-throughput field phenotyping (HTFP) and satellite 
observa=ons offer promising opportuni=es. HTFP provides frequent, accurate, automated measurements of variables, 
while satellite provides data across diverse environments. This study evaluates the value of integra=ng HTFP data from 
experimental plots and satellite data from farmers’ fields for crop model calibra=on. 

Materials and Methods 

The dataset combined observa=ons from two INRAE plarorms in France (Auzeville and Mauguio), where ten contras=ng 
bread wheat varie=es were grown over four growing seasons with different sowing dates, densi=es, and water regimes. 
Measured variables included phenology (heading date), total above ground biomass and its par==oning into leaf, stem, 
and grains, main stem leaf surface area, green area index (GAI), grain yield, and yield. These traits were measured 
through destruc=ve samplings around growth stage ear at 1 cm, flag ligule just visible, anthesis, and ripeness maturity. 
The frac=on of intercepted PAR (fiPAR), the average leaf angle, heading date, and GAI were es=mated using a 
phenomobile device every 100 °Cdays. In addi=on, GAI es=mated from PlanetScope satellite observa=ons and yield were 
collected on 17 farmers’ fields across France for four of the same varie=es. 

The crop growth model SiriusQuality2 (SQ2, version 3.1) was used. It simulates wheat development, canopy dynamics, 
biomass, nitrogen fluxes, and soil processes (Liu et al., 2021). Eighteen genotypic parameters related to phenology, 
canopy expansion, light intercep=on and use, and yield forma=on were es=mated. 

Calibra=on followed the AgMIP protocol (Wallach et al., 2024), implemented with the Crop=mizR R package (Buis et al., 
2024) coupled to SQ2. Several scenarios were compared: (i) destruc=ve data only, (ii) HTFP data with a minimal set of 
destruc=ve measurements (e.g. grain yield), (iii) combined destruc=ve and HTFP data, and (iv) HTFP data with a minimal 
set of destruc=ve measurements complemented with satellite observa=ons from farmers’ fields.  

To evaluate these calibra=on scenarios, a leave-one-out approach was used to assess model predic=ve performance and 
parameter stability, and some es=mated parameters were compared with HTFP measurements.  

Results and Discussion  

First tests showed that the AgMIP calibra=on protocol outperformed the systema=c simultaneous calibra=on of all 
ini=ally considered parameters, as its automa=c parameter selec=on and stepwise assimila=on approach made be\er 
use of mul=ple observed variables, improved convergence, and reduced overfi?ng. 

Whether measured parameters were fixed to their es=mated values and the remaining ones were calibrated, or the 
AgMIP protocol was applied to scenario iii, both approaches led to poor results, especially for integra=ve outputs such 
as grain yield. This suggests that imposing too many constraints on intermediate processes during calibra=on may reduce 



 
 

 

predic=ve performance for these variables, likely due to model approxima=ons and inconsistencies among simulated 
processes. 

By contrast, using HTFP data combined with a minimal set of destruc=ve measurements (total above ground biomass, 
grain yield) proved valuable. This scenario produced predic=ons in new environments that were as good as, or be\er 
than, those obtained without HTFP data. The high temporal resolu=on and precision of HTFP measurements be\er 
constrained canopy dynamics and enabled more relevant es=ma=on of parameters related to plant development and 
growth. Including satellite observa=ons from farmers’ fields across diverse environments, in addi=on to experimental 
site data, improved the predic=on of grain yield and GAI but resulted in poorer simula=ons of biomass. 

Finally, es=mated parameter values were not consistently comparable to measured ones across scenarios, raising 
ques=ons about the ability of calibra=on procedures to retrieve biologically realis=c parameter values and about the 
assump=on that genotypic parameters remain constant across environments. 

Acknowledgements 

This work was funded by the ANR (French Na=onal Research Agency) as part of the FFAST (Func=oning From the 
Assimila=on of Structural Traits) project (grant number ANR-21-CE45-0037) and the Programme d’Inves=ssements 
d'avenir PHENOME (grant number ANR-11-INBS-0012). This work has been realized with the support of ISDM-MESO at 
the University of Montpellier and the cluster plarorm from UMR BioSP in Avignon. 

References 

Buis, S. et al. (2024). https://doi.org/10.5281/zenodo.14145952  

Coudron, W. et al. (2021). Comput. Electron. Agric., 190, 106457. 

Liu et al., (2021). Plant Physiol., 186, 977-997.   

Wallach, D. et al. (2021). Environ. Model. Software, 145, 105206. 

Wallach, D. et al. (2024). Environ. Model. Software, 180, 106147.  



 
 

 

 

 

The quest for balance between accuracy and robustness in crop model-aided genomic predic&on 

Viglione Vittoria*1, Paleari Livia1, Tondelli Alessandro2, Marchetti Chiara1, Confalonieri Roberto1 

1 University of Milan, ESP, Cassandra lab, 20133, Milan, Italy, viboria.viglione@unimi.it 
2 CREA, Research Centre for Genomics and BioinformaVcs, 29017, Fiorenzuola d’Arda, Italy 
Keywords: Equifinality; heading date; number of parameters; spring barley. 

Introduc$on 

Crop simula=on models (CSM) are increasingly used to extend the poten=al of genomic predic=on (GP) as they limit the 
role of sta=s=cs to the development of rela=onships between genomic informa=on and func=onal traits, the la\er being 
only slightly affected by G×E×M interac=on. The influence of environmental and management factors is dynamically 
simulated by crop models on an ecophysiological basis, under the assump=on of a close rela=onship between model 
parameters and plant func=onal traits (Hammer et al., 2002). This allows crop model-aided GP (CSM-GP) to be extended 
outside the condi=ons for which genotype-to-phenotype rela=onships are derived (Messina et al., 2018). However, the 
number of parameters can expose CSM-GP to a non-negligible risk of equifinality, which can undermine its biological 
meaningfulness and robustness (Yang et al., 2022). The aim of this study was to analyse the impact on predic=on 
accuracy of increasing number of parameters for a 2-step CSM-GP approach. To account for model structure, two models 
(WOFOST and Sirius) largely differing in complexity were considered. The case study was on heading date (HD) of spring 
barley. 

Materials and Methods 

The dataset consisted of genomic informa=on (50K SNP array) and HD observa=ons for 151 2-row spring barley 
genotypes grown in 17 environments from Northern Africa to Northern Europe. The steps of the study were: (i) selec=on 
of two models and sensi=vity analysis (SA); (ii) genera=on of four configura=ons for each model based on SA results, i.e., 
configura=on 1: the two most relevant parameters, configura=on 2: the two + n most relevant parameters, etc.; (iii) 2-
step CSM-GP for all models and configura=ons: step 1, decomposi=on of HD into func=onal traits and genotype-specific 
calibra=on, step 2, GP of model parameters (RR-BLUP approach); (iv) analysis of predic=on accuracy using GP parameters 
for all models and configura=ons. 

Results and Discussion 

SA revealed that the most complex model (Sirius) presented large interac=ons (difference between 1st and total order 
effects) between parameters, and that interac=ons increased with the number of parameters, reaching 29% for the 
configura=on with eight parameters, whereas it never exceeded 5% for WOFOST. 

Predic=on accuracy of genotype-specific parameter values dras=cally decreased from the training to the test dataset, 
where a significant linear decrease in the mean correla=on between decomposed and GP parameters was observed 
while increasing the number of parameters, to the point of becoming nega=ve (Fig. 1). This pa\ern, which was more 
pronounced for Sirius, is due to the increased risk of equifinality during parameter op=miza=on. 

Despite the loss of biological meaningfulness of CSM-GP for increasing number of parameters, sa=sfying predic=on 
accuracy was obtained when data from all genotypes and environments were analysed (r≥0.98) due to the large 



 
 

 

variability among environments. However, when predic=on accuracy was evaluated within environment, the risk of 
equifinality reflected in a clear worsening while moving from training (r~0.70) to test (r~0.25) dataset. 

 

 
Figure 1. Pearson’s correlation (red series) between decomposed and genomic-predicted parameter values for model configuration with increasing 

number of parameters for the test dataset, and percentage of parameters with a negative correlation (blue series) between decomposed and 
genomic-predicted values (test dataset). Dotted lines are the corresponding linear regressions. 

Conclusions 

The biological meaningfulness of CSM-GP may be strongly undermined when the number of parameters is not kept to 
the minimum (two for both models in our study), in turn affec=ng CSM-GP robustness when, e.g., a new environment is 
explored. This is true especially in case of many interac=ons among parameters. 
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Introduc$on 

Crop modeling depends on well-documented field data, yet shared datasets ofen lack detail or standardiza=on (Top et 
al., 2022). The FAIR principles, whereby datasets are Findable, Accessible, Interoperable, Reusable (Wilkinson et al., 
2016), highlight these needs. ICASA standards were created to promote reproducibility of experiments (White et al., 
2013, 2025) but have seen limited uptake due to complexity and lack of sofware tools. We present advances linking the 
ICASA Data Dic=onary with spreadsheets and R scripts to generate more datasets for crop modeling that be\er sa=sfy 
FAIR criteria, especially interoperability and reusability. 

Materials and Methods 

The ICASA Data Dic=onary (IDD) retains its core structure, lis=ng terms for experiment metadata, management, soils, 
weather, and crop traits, along with names, defini=ons, units, and codes (Fig. 1A). The IDD has moved from Google 
Sheets to GitHub (h\ps://github.com/DSSAT/ICASA-Dic=onary) ), where it is available as CSV files and a workbook with 

issue tracking. A new dataset 
template mirrors the ICASA 
structure: sheets for metadata, 
treatments, management, 
measurements, soils, and weather, 
with standardized rows for 
instruc=ons, examples, and 
formats (Fig. 1B). Datasets 
typically include 20 to 30 sheets 
that are linked by an index and 
Glossary. The standardized design 
enables R-based support, 
including QA tools that flag errors, 
cross-check iden=fiers, and verify 
variables against defini=ons and 
units. 

  

Results and Discussion 

The IDD, templates, and R tools 
have been used for field 
experiments, including cul=var 
trials, physiology, and irriga=on 
management. A major effort in 

Figure 1. Diagram of the architecture for datasets under the ICASA standards (A) and an 
example worksheet describing treatments using the workbook template (B). 

https://github.com/DSSAT/ICASA-Dictionary


 
 

 

Florida applies discipline-specific templates to help standardize metadata and measurements for nutrient management, 
enabling the use of models and AI to improve recommenda=ons (White et al., in review). Challenges include missing 
management records and soil profiles. The QA tool has proven invaluable for detec=ng data-entry errors and undefined 
terms. Areas highlighted for further development include: 

• Terminology matching: The 1300+ IDD terms are challenging to align with local or non-English usage; automated 
transla=on and AI may help. 

• Replicates vs. means: We dis=nguish replicate data from treatment means by using “_MEANS” for worksheets where 
means are reported. 

• Mul=ple measures of a variable: Traits such as leaf area or canopy height may have several measures, especially 
with sensor data. We propose integer suffixes (e.g., SLAD_1, SLAD_2) with defini=ons for each. 

Other challenges include handling =me series with varying intervals, geospa=ally organized data, and sub-daily 
measurements. R scripts also support data entry and analysis; prototypes show that template-based datasets can 
directly generate DSSAT model input files for immediate use. 

Conclusions 

The IDD, dataset templates, and R scripts provide a flexible, prac=cal way to document field experiments. Experience 
from AgMIP and recent template advances confirm that interoperability and reusability can be enhanced without the 
need for complex databases or sofware. We encourage the crop modeling community to adopt the IDD and templates 
to promote FAIR datasets and advance model development. 
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Introduc$on 

Compound heat and drought (H×D) extremes are intensifying under climate change, yet their interac=ve effects have 
not been well quan=fied in crop models (Rosenzweig et al., 2016). Most current approaches treat the canopy as a single 
homogeneous unit, overlooking organ-specific responses of leaves and spikes to environmental drivers such as 
temperature, water status or radia=on (Allen et al., 1998; Lawson & Milliken, 2023). To address this limita=on, we 
developed an organ-resolved framework that incorporates a newly constructed heat–drought interac=on factor with 
cumula=ve effects (f(HD)) into a Jarvis–Penman–Monteith scheme and explicitly simulates leaf temperatures (Tleaf) and 
spike temperature (Tspike) within an energy-balance structure, with Tleaf and Tspike subsequently replacing air temperature 
as drivers for simula=ng crop development and yield forma=on under H×D condi=ons. 

Materials and Methods 

We conducted a two-year glasshouse experiment with factorial H×D treatments during post-anthesis period on two 
wheat cul=vars, con=nuously measuring leaf stomatal conductance (gs,leaf), spike conductance (gspike), whole-plant ET, 
Tleaf and Tspike. The framework was further evaluated against the INRAE H×D dataset for ET and validated for organ 
temperatures using an infrared-warming field experiment. The model structure includes: (i) a Jarvis-type module for 
gs,leaf and gspike, integrated with f(HD); (ii) a Penman–Monteith ET module coupled with the gs model; and (iii) an energy-
balance solver compu=ng Tleaf and Tspike, which feed back into gs,leaf, gspike, ra,leaf, and ra,spike, forming a closed-loop system 
(Figure 1). 

Results and Discussion 

Incorpora=ng f(HD) improved simula=ons of gs,leaf under H×D stress, reducing bias and be\er capturing its con=nuous 
dynamics throughout treatment and recovery periods. When coupled with the Penman–Monteith scheme, accoun=ng 
for spike transpira=on yielded more accurate canopy-level ET under H×D, with the largest gains at night where 
conven=onal frameworks tended to underes=mate nocturnal ET. Further integra=on into the energy balance model 
improved the accuracy of simulated Tleaf and Tspike and be\er captured the diurnal differences between Tleaf and Tspike. 
Subs=tu=ng these organ temperatures for air temperature further improved predic=ons of grain-filling dura=on and 
fer=lity, linking environment → gs → ET → Tc → development/yield in a mechanis=cally consistent pathway. 

Conclusions 

The main conclusions of our work are: 

(1) Introducing the cumula=ve heat–drought interac=on factor f(HD) substan=ally improves gs,leaf simula=on; 
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(2) Coupling the gs module and explicitly represen=ng gspike delivers the best ET predic=on performance under H×D, 
especially at night; 

(3) The energy-balance module realis=cally simulates Tleaf and Tspike under H×D and provides more informa=ve 
temperature drivers for downstream processes. The framework is modular and can be coupled with crop growth models 
for climate-impact assessments. 

 

 

Figure 1. Flowchart of the organ-resolved energy balance framework under compound heat–drought stress. The dashed line indicate convergence 
loops on organ temperature and aerodynamic conductance. Key parameters are defined as follows: Rn,canopy: net radiation at the canopy surface; 

Rn,leaf: net radiation intercepted by leaves; Rn,spike: net radiation intercepted by spikes; Tair: air temperature; SWC: soil water content. f(T)leaf: 
temperature factorfor leaf stomatal conductance; f(θ)leaf: drought factor for leaf stomatal conductance; f(T)spike: temperature factor for spike 

conductance; f(θ)spike: drought factor for spike conductance; f(HD)leaf: heat - drought interaction factor for leaf stomatal conductance; f(HD)spike: 
heat-drought interaction factor for spike conductance;ra,leaf: aerodynamic resistance of leaves; ra,spike: aerodynamic resistance of spikes 
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Introduc$on 

Within the Decision Support System for Agrotechnology Transfer (DSSAT), two maize (Zea mays L.) crop simula=on 
models—CSM-CERES and CSM-IXIM—have been widely applied to simulate maize yields (Jones & Kiniry, 1986; Lizaso et 
al., 2011; Yakoub et al., 2017; Hoogenboom et al., 2021). While their nitrogen (N) uptake simula=ons were tested under 
different N fer=lizer levels (Yakoub et al., 2017), their phosphorus (P) and N uptake simula=ons have not been intensively 
tested par=cularly using mul=ple in-season observa=ons under varying P fer=lizer levels in P-deficient soils (Dzotsi et al., 
2010; Lizaso et al., 2022). In this study, the seasonal dynamics of P and N concentra=ons in aboveground biomass, as 
simulated by CERES and IXIM, were evaluated against field observa=ons from southern Germany based on experiment 
with one level of N and four levels of P applied. 

Materials and Methods 

DSSAT CERES and IXIM (with minor code modifica=ons to root P intake coefficient (ROOTRAD)) (v. 4.8.5) were evaluated 
based on data from a field experiment conducted in 2022 and 2023 in Southern Germany on P-deficient soils (8.9 mg P 
kg-1 soil), with P fer=lizer (di-ammonium phosphate) treatments of 0, 25, 50, and 75 kg P ha-1 and N fer=lizer (stabilized 
urea) of 120 kg N ha-1. Maize cul=var Stabil (FAO220, KWS Germany) was planted on 19 May 2022 and 25 May 2023. 
Cul=var coefficients were es=mated using the Time-Series-based cul=var coefficient Es=mator (TSE, Memic et al., 2021). 
Target variables for calibra=on included leaf area index, leaf, stem, and grain dry weight aiming at the lowest error 
between simulated and observed values based on the 75 kg P ha-1 treatment data from the 2022 experiment. For species 
coefficients calibra=on, P concentra=on in each plant organ and root radius for P uptake, data of 0, 25, 50, and 75 kg P 
ha-1 in 2023 were u=lized. Since P and N concentra=ons in total aboveground biomass are not directly reported in DSSAT 
output files, they were calculated as the ra=o of cumula=ve P or N uptake (shoot, grain, and shell) to total aboveground 
dry weight (leaf+stem+tassel+shell). 

Results and Discussion 

Figure 1 presents the simulated P and N concentra=on of aboveground biomass by CERES and IXIM with their observed 
values in the field (2022). Overall, CERES showed slightly be\er performance, with higher d-stat values and lower nRMSE 
compared to IXIM, although the differences in accuracy between the two models were small. For P concentra=on, CERES 
achieved an average d-stat of 0.839 and an nRMSE of 23.3%, while for N concentra=on it achieved an average d-stat of 
0.968 and an nRMSE of 16.2% across all fer=lizer treatments (0, 25, 50, and 75 kg P ha⁻¹). Similarly, IXIM performed well, 
with average d-stat values of 0.818 and 0.960, and nRMSE values of 24.4% and 17.2% for P and N concentra=ons, 
respec=vely, across all treatments. 

In CERES, simulated P concentra=on in aboveground biomass tended to be overes=mated throughout the growing 
season. In contrast, IXIM underes=mated P concentra=on in the beginning but overes=mated it at the end of the season 
(Figure 1). Both models captured the increase in P concentra=on observed afer 100 days afer sowing (DAS) (Figure 1a, 
b). Differences among P fer=lizer rates were more pronounced in IXIM simula=ons than in CERES between the 0 and 75 
kg P ha⁻¹ treatments. 



 
 

 

The ini=al P concentra=on in aboveground biomass (0.271%) was well reflected in both models. However, despite using 
the same maize cul=var (Stabil) in both years, observed P concentra=ons at emergence differed between 2022 (0.414%) 
and 2023 (0.271%). These differences likely reflect soil and weather condi=ons, which should be considered in model 
calibra=on, as ini=al P concentra=on is sensi=ve to species coefficient values. In contrast, the default N concentra=on 
values in the species files aligned closely with the observed data, and no adjustment was made. The minimum N 
concentra=on in aboveground biomass at emergence was 4.4% in the default se?ng and changed to 4.2% in this study. 
For more accurate simula=ons of plant N concentra=on, future work should consider refining N-related coefficients 
based on observed data. 

 

Figure 1. Simulated (lines) aboveground biomass P concentration (a: CERES, b. IXIM) and N concentration (c: CERES, d: IXIM) for 0, 25, 50, and 75P in 
2022 with measured field data (dots). Model performance statistics (d-stat and nRMSE %) are shown in each panel. 

Conclusions 

This study compared simula=ons of P and N concentra=ons in aboveground biomass between the CERES and IXIM 
models. Both models performed sa=sfactorily, with high d-stat values (CERES: 0.839; IXIM: 0.818). While CERES showed 
slightly be\er overall accuracy, the IXIM simula=ons provided be\er reflec=ons of the effects of different P fer=lizer 
levels on plant P and N concentra=ons. Further evalua=on under diverse condi=ons, including varying weather, soil, 
gene=c backgrounds, and crop management prac=ces, is required to more comprehensively test the ability of DSSAT 
models to simulate P and N concentra=ons. Addi=onally, sufficient data on ini=al nutrient concentra=ons should be 
collected to refine gene=c coefficients, as the star=ng values of shoot P concentra=on significantly influence simulated 
seasonal P dynamics. 
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Introduc/on 

Many studies have highlighted the importance of improving crop phenology predic=on by accoun=ng for varietal 
behavioral differences. Arvalis provides stage predic=on models for decision support systems, available through 
commercial tools. Phenological models rely on vernaliza=on–photoperiod–thermal =me sums were built using 
Soissons as a reference variety. The aim for Arvalis is to deliver reliable predic=ons for an ever-growing number of 
varie=es while saving =me and resources. 

Materials and Methods 

In this study, we compare different calibra=on methodologies, taking into account the level of knowledge available for 
each variety. We assembled a dataset of 800 varie=es, spanning 1979–2023, across 374 loca=ons in France, for the 
stages 1cm-ear (Z30) and heading (Z55) on Zadoks scale (Zadoks et al., 1974). 
Besides Soissons, we dis=nguish three varietal lists with decreasing levels of knowledge (P, N, I). The P list is composed 
of well characterized varie=es, with their own parameters. N cul=vars are less known and are associated with P 
varie=es using rela=ve proximity indicators based on an earliness score. Varie=es into I category are not characterized 
yet and are predicted like Soissons by default. The dataset is composed of 105 P-list varie=es, 525 from N-list and 172 
belonging to I-list. The reference method (Method1) relies on Nelder-Mead op=miza=on (for Soissons) ; associa=on 
methods for P and N varie=es require considerable =me, with strong exper=se before and afer calibra=on. 

Therefore, we propose four others methods of calibra=on: AgMIP-based protocol (Method2 ) (Wallach et al., 2021, 
2023), mixed-effects model (Method3), L-BFGS-B (Method4), and marker-based approach (Method5 ; (Bogard et al., 
2021b, 2021a)). Due to the =me simula=on AgMIP-based method was tested on Soissons only. L-BFGS-B method also 
permi\ed to include exper=se by adjus=ng parameters bounds. Marker-based method was evaluated on less 
situa=ons (and varie=es) because the gene=c parameters were not available for some recently registered varie=es at 
the =me of the study. We could compare methods from compu=ng indicators of performance afer cross-valida=on. 

Results and Discussion 

Results confirm the importance of expert knowledge. For well-known varie=es, the historical method is as efficient as 
L-BFGS-B (RMSEP ≈6.3 and 3 days; EF = 0.78 and 0.91 at Z30 and Z55). L-BFGS-B performs best for N- and I-lists, while 
the marker-based approach outperforms others for heading in I-list and enables predic=on of new varie=es without 
trials (Table 1). 
Regarding =me, mixed-effects calibra=on took 1 day for 800 varie=es, vs 9 days for L-BFGS-B and 20–30 for the 
historical method. 

 

 



 
 

 

Conclusions 

Considering both the performance and computa=onal =me of each approach, L-BFGS-B method and marker-based 
approach appear the most promising candidates for further development, with the la\er to be reassessed with new 
varie=es. AgMIP-based method requires long run=mes rela=ve to its performance, while mixed-effect model does not 
achieve the expected accuracy compared with (1) L-BFGS-B method under similar data volume and execu=on =me, (2) 
marker-based one, which does not rely on experimental data. Ul=mately, regardless of the chosen method, a layer of 
expert judgment will remain essen=al to ensure consistency with biological reality. 

  



 
 

 

  
1 cm ear (Z30) Heading (Z55) 

  
Method
1  

Method
2  

Method
3  

Method
4 

Method
5  

Method
1  

Method
2 

Method
3 

Method
4 

Method
5 

Global EF 0.76 
 

0.67 0.79 0.72 0.9 
 

0.88 0.90 0.9 

Bias -0.73 
 

-2.75 -0.03 0.43 0.06 
 

-1.17 -0.02 -0.61 

RMSEP 6.96 
 

8.20 6.45 7.32 3.24 
 

3.49 3.12 3.25 

RRMSEP 8.41 
 

9.91 7.80 8.74 2.37 
 

2.55 2.28 2.37 

n 11672 
 

11672 11672 10440 11672 
 

11672 11672 10440 

Soissons EF 0.86 0.8 0.85 0.86 0.77 0.89 0.86 0.89 0.89 0.89 

Bias -0.36 0.42 -0.77 -0.13 4.17 0.26 -1.40 -0.58 0.2 0.26 

RMSEP 5.48 6.48 5.52 5.47 6.98 2.88 3.21 2.93 2.85 2.88 

RRMSEP 6.57 3.21 6.62 6.56 8.36 2.12 2.36 2.15 2.09 2.12 

n 1208 1208 1208 1208 1208 1208 1208 1208 1208 1208 

P EF 0.78 
 

0.67 0.79 0.74 0.91 
 

0.88 0.91 0.9 

Bias -0.52 
 

-3.00 0.03 0.6 0.2 
 

-1.16 0.06 -0.56 

RMSEP 6.37 
 

7.9 6.21 7.02 2.99 
 

3.39 2.97 3.16 

RRMSEP 7.62 
 

9.45 7.43 8.35 2.17 
 

2.47 2.16 2.30 

n 8693 
 

8693 8693 7978 8693 
 

8693 8693 7978 

N EF 0.69 
 

0.63 0.78 0.68 0.87 
 

0.87 0.88 0.89 

Bias -1.34 
 

-2.28 -0.16 -0.16 -0.53 
 

-1.27 -0.34 -0.84 

RMSEP 8.19 
 

9.00 6.99 8.05 3.83 
 

3.78 3.57 3.55 

RRMSEP 10.2 
 

11.3 8.74 9.71 2.86 
 

2.82 2.66 2.62 

n 2761 
 

2761 2761 2286 2761 
 

2761 2761 2286 

I EF 0.73 
 

0.82 0.85 0.79 0.86 
 

0.92 0.92 0.95 

Bias -1.54 
 

1.34 -1.01 0.68 1.88 
 

-0.19 0.81 0.14 

RMSEP 11.3 
 

9.1 8.4 10.0 4.37 
 

3.30 3.29 2.88 

RRMSEP 13.2 
 

10.7 9.87 12.0 3.18 
 

2.4 2.39 2.07 

n 218 
 

218 218 176 218 
 

218 218 176 

Table 1: Summary table comparing performances results based on different calibration methods for predicting 1cm-ear (Z30) and heading (Z55) in 
soft winter wheat. Calibration methods were : reference (Method1), AGMIP (Method2), mixed-effects model (Method3), L-BFGS-B (Method4) and 
marker-based model (Method5), respectively. Indicators are : Nash-Sutcliffe efficiency (EF), Bias, Predicted root mean squared error (RMSEP), 
Relative RMSEP (RRMSEP) and number of situations (n), respectively. 
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Introduc$on 

In cropping systems, soil organic ma\er (SOM) affects crop produc=vity, greenhouse gas emissions and soil structure, 
but it is strongly influenced by soil characteris=cs, weather and management. Through cropping system modeling, these 
complex interac=ons can be be\er understood. Most cropping system models represent SOM as conceptual pools 
(ac=ve, passive, and slow) that are not directly measurable (Campbell & Paus=an, 2015). As a result, these models can 
be calibrated only against total soil organic ma\er rather than individual pool sizes. In contrast, SOM can be characterized 
through measurable frac=ons of par=culate organic ma\er (POM) and mineral-associated organic ma\er (MAOM), 
which differ in their physical and chemical proper=es and respond dis=nctly to management and climate (Lavallee et al., 
2020). Only a limited number of models using this framework have been developed specifically for arable soils. 

Against this background, the AMPSOM model was developed to simulate soil carbon and nitrogen dynamics in POM and 
MAOM in response to crop development, management prac=ces, soil texture, water, nitrogen availability and 
temperature (Tougma et al., 2024).  

Materials and Methods 

AMPSOM is a depth-explicit process-based SOM model, with each layer having one mineral N pool and five soil organic 
carbon (SOC) and N pools. To be\er constrain the turnover =me of slowly cycling SOC pools, the model also 
incorporates radiocarbon isotope (¹⁴C) of SOC. In AMPSOM, decomposed aboveground li\er enters in the soil through 
the POM pool, which is defined as the sum of fresh root li\er, the non-water soluble part of decomposed aboveground 
li\er and crop residues. Through microbial ac=vity influenced by soil temperature and moisture, POM undergoes 
depolymeriza=on and goes to the dissolved organic ma\er (DOM) pool.The water-soluble part of decomposed 
aboveground li\er contributes directly to the DOM pool of the first soil layer, while root exudates of each layer are 
added to the DOM pool of the respec=ve layer. Compe==on for the DOM pool occurs between microbes and mineral 
protec=on, the la\er pathway contribu=ng to MAOM accumula=on. At every =me step, a part of the microbes dies 
and moves into the necromass pool, where it can either be decomposed into DOM or stabilized as part of the MAOM 
pool. 

AMPSOM was first developped in R and then integrated within the cropping system modeling framework SIMPLACE 
(Enders et al., 2023). Here it was integrated to other modules simula=ng crop (Lintul5) and root (SlimRoots) growth 
and development, water dynamics in the soil and in the plants, li\er decomposi=on and soil and canopy temperature. 
It was then calibrated and evaluated using size-frac=onated (Cambardella & Ellio\, 1992) soil data in thirty-six sandy 
and loamy arable soils in Brandenburg, Germany. The objec=ve func=on used for calibra=on was the average rela=ve 
root mean square error (RRMSE), across all sites and profile depths for simulated and measured 1) POM C and N 
content, 2) MAOM C and N content, 3) microbial C and N content, and 4) total soil Δ14C.  
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Results and Discussion  

The AMPSOM model evalua=on showed it was able to capture observed SOC and N stocks in POM and MAOM along 
depth gradients, with mean RRMSE values of 33% in sandy soils and 29% in loamy soils. Performance of POM-C was 
good in the top 0–20 cm where the RRMSE averaged 27%, but accuracy declined in deeper layers. The model 
overes=mated MAOM-N concentra=ons in the upper 0–30 cm but underes=mated them at depth. Predic=ons of 
microbial C and N were too high, with average overes=ma=on around 60%. The 14C profile was reproduced between 30 
and 90 cm, and subsoil 14C showed greater variability than in surface layers.  

The simulated depth profile of Δ¹⁴C was consistent with the commonly observed pa\ern of younger carbon in the 
topsoil compared to the subsoil. While only a few studies have explored the simula=on of measurable pool-based SOM 
models in croplands, many have applied them in grasslands and reported comparable performance. Similarly, 
agroecosystem models based on a conceptual pool-based approach were able to simulate total soil carbon stocks, with 
RRMSE values comparable to those of AMPSOM. 

Conclusions 

This study represents a scien=fic and methodological advance in cropping system modelling by explicitly simula=ng 
measurable SOM pools, including 14C dynamics and calibra=ng the soil-crop model with size-frac=onated data. This 
approach is not widely used in arable-land model development, cons=tu=ng an opportunity to improve understanding 
of soil carbon and nitrogen dynamics in response to crop and soil management. Future work should focus on 
improving N dynamics and root exudates simula=on, as well as including =llage. Addi=onal studies are needed to 
extend model evalua=on across broader agro ecological environments and applying the framework to assess long-term 
sustainability of cropping systems. 

Acknowledgements  

This work was funded by the Leibniz Centre for Agricultural Landscape Research (ZALF) through the internal priority 
project (IPP)- Op=mal N 

 

References: 

Cambardella CA, Elliob ET (1992) ParVcipate Soil Organic-Maber Changes across a Grassland CulVvaVon Sequence, Soil Science Society of America 

Campbell EE, PausVan K (2015) Current developments in soil organic maber modeling and the expansion of model applicaVons: A review. 
Environmental Research Lebers, 10(12), 123004 

Enders A, Vianna M, Gaiser T, Krauss G, Webber H, Srivastava AK, Seidel SJ, Tewes A, Rezaei EE, Ewert F(2023) SIMPLACE—a versaVle modelling and 
simulaVon framework for sustainable crops and agroecosystems. In Silico Plants, 5(1), diad006 

Lavallee JM, Soong JL., Cotrufo M F (2020) Conceptualizing soil organic maber into parVculate and mineral-associated forms to address global 
change in the 21st century. Global Change Biology, 26(1), 261–273.  

Tougma IA, Van De Broek M, Six J, Gaiser T, Holz M, Zentgraf I., Webber H (2024) AMPSOM: A measureable pool soil organic carbon and nitrogen 
model for arable cropping systems. Environmental Modelling & So�ware, 185, 106291. 

  



 
 

 

AgriScale: A distributed framework for gridded crop model ensemble applica&ons 
Midingoyi Cyrille A.*1, Falconnier Gatien N. 1, BLITZ-FRAYRET Céline2, Pradal Christophe3, Giner Michel1, Adam 
Myriam3, Corbeels Marc1, Couëdel Antoine 1, Heuclin Benjamin1, Lavarenne Jérémy4, Gerardeaux Edward1, Loison 
Romain1, Christina Mathias1, Sester Mathilde1, Cardinael Rémi1, Bruelle Guillaume1, Auzoux Sandrine1, Leroux Louise1, 
Chavez Erik7, Soulié Jean-Christophe5, Justes Eric6, Affholder François1 
1 CIRAD, AIDA, Montpellier, France, cyrille_ahmed.midingoyi@cirad.fr 
2 CIRAD, Eco&Sols, Montpellier, France 
3 CIRAD, AGAP insVtut, Montpellier, France 
4 CIRAD, TETIS, Montpellier, France 
5CIRAD, Recyclage et Risque, Montpellier, France 
6CIRAD, PERSYST Departement, Montpellier, France 
7Imperial College, London 
 

Keywords: ensemble modeling, crop simula=on models, spa=al modeling, climate change, sofware framework 

Introduc$on 

Recent advances in high-performance compu=ng (HPC) and cloud infrastructures are transforming agricultural research 
by enabling large-scale simula=ons of cropping systems to explore climate change adapta=on strategies. Gridded crop 
modeling plarorms provide valuable tools for this purpose (Franke et al., 2020), but they are ofen restricted to a single 
Process-based crop model (PBM), =ed to specific applica=ons or compu=ng environments (CE), and limited in 
computa=onal efficiency. This raises key ques=ons: how can we foster the integra=on and comparison of mul=ple models 
within a unified framework, improve the scalability and efficiency of spa=ally explicit mul=-model simula=ons across 
heterogeneous CE, and reduce barriers to deploy these large-scale simula=ons across diverse CE? 

Methods and Use Cases 

AgriScale is a distributed framework that integrates mul=ple PBM to enable simula=ons across various spa=al scales, 
resolu=ons, management prac=ces, and simula=on configura=ons. It provides a formal descrip=on of gridded input 
datasets, and standardizes data flows via database schemas (Giner et al., 2024; A�older et al., 2012). It encapsulates 
PBM engines, ensuring portability across heterogeneous CE. To improve efficiency, a caching system minimizes 
redundant input file genera=on, while distributed computa=on scheduling leverages both intra- and inter-task 
parallelism without communica=on (Figure 1). An adap=ve subdomain decomposi=on further balances workloads, and 
dynamically op=mizes data storage. 

We evaluated AgriScale with three models—DSSAT, STICS, and CELSIUS—driven by gridded datasets from mul=ple 
sources. Benchmark experiments were run across 3 CE (2 HPC clusters and 1 cloud) configured with different file systems 
- WekaFS, ZFS, and EXT4 - each influencing performances in data-intensive applica=on. Two case studies assessed 
performance and scalability: (i) 66,480 maize growth simula=ons in Senegal, and (ii) 3,830,650 simula=ons across Sub-
Saharan Africa. The second case study was completed on each HPC in less than 4 hours using 120 cores for this ensemble 
of 3 models. 

Results and Discussion 

AgriScale consistently achieved high computa=onal efficiency (>70%) across all file systems at various simula=on 
scales.  On ZFS, typically constrained by intensive I/O, the use of large RAM disks for intermediate results enabled 
performance comparable to WekaFS with SSD storage. Among models, CELSIUS was the fastest, averaging 0.04 s per 
one-year simula=on per core, whereas DSSAT and STICS each required 0.1-0.2s.  Although EXT4 shows a longer wall-
clock =me with few cores, it achieves a near-superlinear speedup at higher core counts, which may be a\ributed to 
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memory hierarchy effects. AgriScale successfully produced NetCDF outputs for each model and scenario, including 
yearly =me series of crop phenology, biomass, yield, soil water and nitrogen content, and other key soil–crop variables 
(Figure 2).  

 

  
Figure 2: AgriScale functional workflow                                                                    

 

Conclusions  

AgriScale efficiently runs large-scale crop simula=ons on HPC and cloud plarorms without requiring modifica=ons to 
exis=ng PBMs. It allows to evaluate cropping systems through model ensemble analyses under climate variability and 
change, with applica=ons ranging from op=mizing sowing dates and cul=var choice, to designing sustainable 
intensifica=on op=ons. Ongoing developments are extending its mul=-model capacity with other PBMs, posi=oning 
AgriScale to serve as a reference framework for the GGCMI project (Franke et al., 2020). 
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Introduc$on  

Calibra=on of crop models melds the theory embodied in the model with the ground truth embodied in the data. It is 
probably the most important aspect of applying a crop model to a new problem. Making effec=ve use of the available 
data is essen=al for minimizing predic=on error. Furthermore, if one wants to compare process equa=ons, or whole 
models, or the usefulness of different data sets, it is important not to complicate the comparison with differences in 
calibra=on approach. Thus, one needs a reliable, widely applicable calibra=on approach. Since 2018, the AgMIP 
calibra=on group has pursued three objec=ves: Documen=ng and comparing current calibra=on prac=ces, proposing a 
widely applicable standard calibra=on protocol and developing tools for applying that protocol. In an ini=al phase, a 
calibra=on protocol for phenology data was proposed. This was then extended to a calibra=on protocol applicable to 
essen=ally any data set and crop models. 

Calibra$on Protocol 

The heart of the protocol is the treatment of two par=cularly difficult aspects of crop model calibra=on, namely the 
choice of which parameters to es=mate from the data and the way to handle mul=ple observed variables. For the choice 
of parameters to es=mate, the protocol considers one variable group at a =me. All phenology variables are in one group. 
Measurements over =me of the same variable, e.g. biomass, are together in one group. All other variables are in a group 
by themselves. For each group, one iden=fies one parameter per variable (two if there are mul=ple measurements over 
=me) that is likely to strongly reduce bias. These parameters are automa=cally chosen to be es=mated. One also 
iden=fies a list of “candidate” parameters, which might explain a substan=al part of the variability between 
environments or treatments. The candidate parameters are tested as in forward regression, using the corrected Akaike 
Informa=on Criterion (AICc), which is designed to avoid over-fi?ng, to test whether the parameter should be es=mated 
or fixed at its default value. This is very closely based on standard prac=ce of parameter es=ma=on in regression. The 
protocol includes a simple diagnos=c which shows to what extent bias is in fact reduced by es=ma=ng the supposed bias 
reducing parameters. 

Trea=ng one variable group at a =me greatly simplifies the numerical problem, but may lead to a poor final fit to some 
variables, if the simulated values of those variables are affected by fi?ng subsequent variable groups. Therefore, the 
protocol includes a final, weighted least squares (WLS) step, where all parameters are es=mated together. This again is 
closely analogous to standard sta=s=cal procedure. One first obtains an es=mate to the parameter values, here by 
trea=ng one variable group at a =me, and then uses that es=mate to obtain weights for a WLS step. The protocol includes 
a simple graphical diagnos=c that shows visually the extent of feedbacks. 

Applica$on of the Protocol 

The protocol was tested using ar=ficial data (Wallach et al., 2024), then for a single model using real data (Wallach et al., 
2025), and recently in a mul=-model simula=on experiment. This mul=-model study shows that the protocol is easily 



 
 

 

applied to a wide range of model structures. The data set used included mul=ple variables (phenology, biomass, ear and 
grain number, biomass N, yield, seed protein). In fact, the protocol is designed to handle essen=ally any data set. The 
protocol recommends using all observed variables with simulated equivalents, because fi?ng as many processes as 
possible should maximize the overall realism of the simula=ons. 

Over-fi?ng is a major danger in calibra=on, because of the very large number of model parameters. In the tests of the 
protocol, it was systema=cally found that predic=on error was similar to fi?ng error, i.e. there was no indica=on of over-
fi?ng (Buis et al. 2024). 

In the mul=-model study, all modeling teams obtained very good results for phenology and biomass, but much worse 
results for other variables. Average final rela=ve root mean squared error for the calibra=on data ranged from 0.02 for 
=me to stem elonga=on, 0.35 for biomass N, with yield second worst at 0.29. There was of course variability between 
modeling teams, but the same trend was observed for all teams. This may be the best crop models can do, with this 
data set. 

Conclusions 

The AgMIP calibra=on protocol is applicable to essen=ally all crop models and data sets. It is closely based on sta=s=cal 
parameter es=ma=on, which increases confidence in the procedure. It includes diagnos=cs to be\er understand the 
calibra=on results. Sofware to automate applica=on of the protocol is under development. We suggest that the AgMIP 
calibra=on protocol is a very promising candidate for a standardized calibra=on procedure for crop models. 
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Introduc$on 

Crop models became well established in the periods from the 1960s into the 1980s capturing most of the major crop 
processes. From the 1990s to 2010s, model developments captured increasingly complex processes based on more 
detailed experimenta=on and at the same =me, the use of models greatly broadened from decision making and risk 
analysis in the agronomy of cropping systems through to applica=ons in plant breeding and in the use of ensemble 
models to analyse global impacts of climate change. However, throughout these periods, crop models have been s=ll 
largely ‘hand-crafed’ and require explicit parameteriza=on especially for genotype characteris=cs (phenological and 
physiological responses to environment) and for soil parameters and their ini=al condi=ons. One departure from this 
constraint of parameteriza=on is where crop models have been interfaced with quan=ta=ve gene=cs models. In CGM-
WGP (Crop Growth Model – Whole Genome Predic=on) strategies, crop parameters are effec=vely es=mated as 
func=ons of genomic markers, i.e. enabling incorpora=on of ‘physiological trait effects’ into modern genomic predic=on-
based breeding programs (Cooper et al 2021). 

With the increased capability of deep learning methods, it is appropriate to consider ways in which such methods might 
be u=lized to con=nue the advancement and applica=on of crop models. While crop models may retain an advantage in 
predic=on and forecas=ng roles (e.g. climate change analysis), deep learning models have been promoted for use in 
situa=ons where real-=me informa=on about crop growth is available, for example via satellite sensing or phenotyping.  

In these situa=ons, it may be possible to ‘replace’ a crop model with a deep learner (some=mes called an emulator) to 
describe biomass accumula=on as a func=on of remote sensing indices and weather. 

Materials and Methods 

This paper provides examples of how we are u=lizing crop models to 

- Train deep learning models to address ‘inversion problems’ for predic=on of model parameters or es=ma=on 
of growth traits 

- Integrate with deep learning models through PIML (physics informed machine learning) approaches 

Results and Discussion 

In decision support research to manage climate risk, cropping system models were historically used to create massive 
synthe=c databases of crop management interven=ons (e.g. WhopperCropper, Nelson et al 2002) and to provide ‘real-
=me’ simula=ons of in-crop decision making (e.g. YieldProphet Hochman et al 2009). Research in plant breeding further 
mo=vated the use of crop models to create ‘synthe=c datasets’ and ini=ated various research efforts to improve 
sta=s=cal methodologies used in ‘real-world datasets’; for example (Bustos-Korts et al., 2019) demonstrated how 
synthe=c datasets could be used for evalua=on of alterna=ve phenotyping strategies. 

 



 
 

 

Bustos Korts et al. (2019) used synthe=c datasets to validate precision of sta=s=cal methods to interpret phenotypic 
data, e.g. =me series of biomass. Building from this concept, we used crop models to generate massive synthe=c datasets 
for a range of soil plant available water content (PAWC) condi=ons (Nguyen et al 2025). We demonstrated that a deep 
learning (DL) model (mul=-modal sequen=al cross-model transformer) could be trained using synthe=c =me-series data 
of biomass, leaf area index NDVI and weather variables such that it could es=mate the PAWC classes used to ini=alize 
the synthe=c datasets with some reasonable precision. With sufficient diversity of =me-series data, DL could 
discriminate among lower PAWCs (via impact on =me-series of growth variables) although it was challenging in 
discrimina=ng among higher PAWCs as there was li\le signal in the contras=ng =me series when PAWC was high. 

In other research, we have used deep learning to address a related issue in remote sensing. We linked a radia=ve transfer 
model (PROSAIL) to the APSIM crop model to generate spectral informa=on from these large synthe=c datasets of LAI, 
chlorophyll (N) content (Chen et al., 2022). We then used a DL model to invert this synthe=c dataset in order to es=mate 
the APSIM daily outputs. This DL model could then be applied to real-world datasets in order to demonstrate its u=lity 
in es=ma=on of remote sensing targets like LAI and chlorophyll content. Chen et al. (2022) showed that by using APSIM 
to create synthe=c training datasets for PROSAIL, the DL model was able to ‘learn’ from a ‘biologically constrained’ 
training set and perform be\er than if all possible PROSAIL parameter combina=ons were used to create the training 
set, e.g. the crop model permi\ed only ‘sensible’ combina=ons of LAI and chlorophyll to be used by the DL. 

In our most recent research, we aim to develop physics-informed machine learning (PIML) techniques for crop trait 
predic=on that effec=vely integrate empirical data with established physical and physiological knowledge. By combining 
the strengths of both data-driven and physics-informed approaches, this ac=vity seeks to deliver accurate and robust 
crop trait predic=ons across diverse environmental condi=ons and management prac=ces, using readily available data 
sources such as reflectance indices from mul=spectral imagery. Rather than relying solely on data, as in standard 
machine learning, the models will be guided by physical principles during training. In par=cular, the PIML framework will 
u=lize simula=ons and low-cost sensor data to train models for predic=ng key crop traits such as biomass, water use 
efficiency (WUE), and nitrogen use efficiency (NUE).  

Conclusions 

The next genera=on of crop models will u=lize deep learning methods in parameteriza=on of both environmental and 
crop/gene=c parameters and progress development of hybrid methods which combine crop and deep learning models 
including for biological processes which are challenging to parameterise. 
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Introduc$on  

Wheat is the most traded crop commodity at the global scale and provides more than 20% of calories and protein in 
human diets (Shiferaw et al., 2013). However, cropping systems’ abilty to produce food in quan=ty and quality is 
impacted among others by climate change through increased temperatures, changing precipita=on pa\erns, and greater 
frequency of extreme events (drought, waterlogging, etc.). Iden=fying Genotype (G) traits and adapted Management 
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(M) prac=ces allowing to maintain high and stable yielding situa=ons accross various Environment (E) remains a 
challenge in face of the GxExM interac=ons complexity (Dueri et al., 2022, Stella et al., 2023).  

Process-based crop models have been used from local to global scales to inves=gate the effects of management and 
climate change on crop growth, including grain yield and nutri=onal quality (Gurain et al., 2022), and environmental 
impacts, such as SOC and GHG emissions (Basso et al., 2025). Research over the last several decades has shown that 
there is no silver-bullet soil-crop model and that mul=-model ensembles (MMEs) have quite high skill and are be\er 
than most, if not all, individual models to capture and simulate the diversity of broader sets of environmental condi=ons 
and management prac=ces (Wallach et al., 2018). Crop models remain simplified representa=ons of complex agro-
ecosystem func=onning. Each model incorporates varying theore=cal assump=ons, leading to conceptualiza=on ranging 
from (semi-)empirical to accurate formaliza=on of physically-based process or mecanism. As one moves away from the 
condi=ons under which they were developped, calibrated and validated, other mechanisms may come into play that the 
model would not represent (Basso et al., 2025).  

Wheat yield elabora=on is the result of complex dynamic and interac=ng processes. Understanding drivers and limits in 
high yielding situa=on – i.e. when yield gets closer to its biophysical limits - requires more insight into the determinis=c 
pathways of yields elabora=on. To help visualize and analyse the interrela=onships within the ecophysiologicy of wheat 
grain yield se?ng, the concept of wiring diagram has recently been proposed (Reynolds et al., 2022). It offers insights 
into the dynamic switch between source- and sink-force that underlines grain yield elabora=on and has been linked to 
the harvest index (HI) concept, i.e. the ra=o between aboveground source and sink organs at harvest. 

We propose to use the wiring diagram framework to inves=gate how formaliza=on within a MME can impact MME’s 
ability to simulate high yielding situa=ons. 

Materials and Methods  

Wheat growth and yield were monitored at Rots, in France, between 2002-04, 2008-10 and 2012-16. Data collected 
included dynamic records of phenology, total biomass, plant N uptake, grain yield components (final yield, ear number, 
thousand kernel weight) and grain N content, as well as meteorological condi=ons. 

The MME was cons=tuted  of 27 models. Simula=ons of the 11 years were performed under 4 modes, namely i) actual 
soil water and N supply (LO), ii) unlimited N supply (UN), iii) unlimited water supply (UW) and iv) unlimited water and N 
(UL).  As it seemed that a problem with soil water holding  capacity existed, UW mode was retained for this study. 

Model were clustered on two main criteria regarding their formaliza=on :  

• Light u=liza=on : do model rely on RUE approach or another one (e.g. photosynthesis/respira=on) ; 
• Yield elabora=on : do model rely on explicit simula=on of grain number or on HI approach. 

Results and Discussion  

The e.Median of models’ cluster simula=ng light use using RUE concept  showed slightly be\er performances in 
simula=ng biomass and yield, but tended to compensate by simula=ng a longer grain filling period, by an=cipa=ng 
anthesis date. 

The e.Median of models’ simula=ng explicitly sink strength (grain number) tended to perform slightly worst in predic=ng 
yield and biomass, due to a systema=c underes=ma=on (Fig.1). This was par=cularly true for low yielding situa=ons. 

Important differences in phenology simula=on performances were reported for the different clusters, as well as in ex 
post HI. 



 
 

 

 
Figure 1. Global and clustered e.Median - by yield elaboration formalisms - against observations. 

Conclusions 

We showed that model formaliza=on, especially formalisms related to the simula=on of sink and source strengths might 
have an important impact on model’s ability to reflect contrasts between high yielding and low yielding situa=ons.  
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Introduc$on  

Pests and diseases (P&D) pose a significant threat to wheat produc=on and, thus, global food security. By 2050, wheat 
output must increase 35–56% to feed the world popula=on (Van Dijk et al., 2021). However, shifs of global temperature 
and precipita=on pa\erns under a changing climate add uncertainty for agricultural systems to meet such expecta=ons. 
The effects of a more humid and warmer climate with an increased occurrence of extreme weather events can further 
exacerbate wheat produc=on loss due to bio=c stress (Pequeno et al., 2024). 

Modeling P&D impacts has been limited due to the complexity of the system, knowledge gaps, and the difficulty 
in making reliable predic=ons. So far only a few studies have integrated agrophysiological and epidemiological processes, 
and disease-coupled crop models remain scarce, ofen relying on a single wheat model. Meanwhile, Mul=-Model 
Ensembles (MME) have shown that ensemble mean (E-mean) and median (E-median) can reduce uncertainty and be\er 
match observa=ons than individual models (Martre et al., 2015). However, most crop models cannot simulate P&D 
interac=ons, leaving bio=c stress as a major source of uncertainty of crop model projec=ons. The goal of this study is to 
introduces a Disease-coupled Mul=-Model Ensemble (D-MME) approach within the Cropping System Model (CSM) of 
the Decision Support System for Agrotechnology Transfer (DSSAT; Hoogenboom et al., 2019), enabling simultaneous 
simula=on of abio=c and bio=c stresses on wheat development and yield.  

Materials and Methods 

Pest coupling points were implemented in CSM-CROPSIM-Wheat and CSM-CROPSIM-CERES-Wheat and used with the 
disease-coupled CSM-NWheat model (Ferreira et al., 2021) to simulate the effect of Fusarium head blight (FHB; Fusarium 
graminearum) on wheat. These coupling points are linked to model rate and state variables, enabling integra=on with 
P&D damage modules. Field data from six loca=ons over six years (2017–2022) were used for calibra=on and evalua=on 
of the disease-coupled models. At one site, a two-year dataset captured natural FHB infec=ons under four fungicide 
regimes: 7-day, 14-day, 21-day, and a control with no fungicide applica=on. The 7-day treatment showed li\le to no 
visible symptoms of infec=on and was considered disease-free, providing a basis for evalua=ng the individual models 
and ensemble performance. 

 

Figure 1. Graphical representation of the coupling method between pest and disease models and wheat growth modules within the DSSAT-CSM. 



 
 

 

Results and Discussion 

The three wheat models showed different responses when simula=ng the daily grain development under disease 
pressure. The D-MME approach showed a greater sta=s=cal significance in simula=ng yield under the effect of disease 
damage for both the E-mean and E-median (Table 1). A comparison between disease-coupled and uncoupled approach 
was conducted to highlight how crop models that do not account for bio=c stress pressure would perform. 

 

Table 1. Grain yield of wheat under fungicide treatments at Coxilha, RS, Brazil, in 2018 and 2019. Model results and statistical evaluation compare 
yields simulated by disease-coupled models and the ensemble approach against end-of-season observations. 

Treatment Field 
observations 

CSM-CERES-
Wheat 

CSM-CROPSIM-
Wheat 

CSM-NWheat E-mean E-median 

2018 

7-day interval  3832 3760 3920 3798 3826 3798 

14-day interval 3593 3449 3616 3598 3554 3598 

21-day interval 3367 3365 3532 3554 3484 3554 

No Fungicide 2852 2825 2973 3269 3022 2983 

2019 

7-day interval  4468 5452 4726 3919 4699 4744 

14-day interval 4138 4648 4072 3476 4065 4088 

21-day interval 3985 4240 3737 3247 3741 3751 

No Fungicide 3073 3925 3474 3073 3491 3487 

Statistical analysis      

Di
se

as
e -

co
up

le
d 

ap
pr

oa
ch

 RMSE (kg ha⁻¹) 406.6 207.6 517.3 197.3 205.5 

NSE 0.23 0.79 -0.24 0.83 0.80 

R2 0.90 0.81 0.14 0.82 0.82 

U
nc

ou
pl

ed
 

ap
pr

oa
ch

 RMSE (kg ha⁻¹) 1007.9 636.71 430 584.8 592.2 

NSE -3.72 -0.88 0.14 -0.59 -0.63 

R2 0.57 0.57 0.57 0.57 0.57 

 

Variability among individual model simula=ons emphasizes the importance of using MMEs rather than relying 
on individual model outputs for decision-making. The D-MME results demonstrated improved agreement with the 
observa=ons across all treatments when simula=ng crop growth under both abio=c and bio=c pressures. Both E-mean 
and E-median outperformed the sta=s=cal metrics of the individual wheat models. 

Conclusions 

As most crop simula=on models fail to account for the impacts of P&D on crop growth and yield losses, the use of 
diseased-coupled crop models capable of simula=ng bio=c and abio=c dynamics can address this cri=cal gap in current 
crop modelling studies. The novel D-MME enables a more accurate representa=on of agrosystems and an ini=al step for 
more accurate predic=ons of crop produc=on projec=ons under a changing climate.  
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Introduc$on 

Opera=onal tools that quan=ta=vely link plant-disease epidemics to crop produc=on remain scarce (de Angelo Luca et 
al., 2024), even as losses stay substan=al and uneven across regions and climate change reshapes pathosystem dynamics. 
In response, we present FraNchEstYN, an open-source R package delivering an interoperable crop-disease framework 
that runs stand-alone or couples at run =me to external crop models. This framework aims to provide synchronous 
es=mates of yield losses due to plant diseases.  

Materials and Methods 

The FraNchEstYN framework provides a modular environment to quan=fy disease-induced yield losses under contras=ng 
environments and management (Figure 1). Temperature- and moisture-driven suitability, adapted from Magarey et al. 
(2005) feeds a Suscep=ble-Exposed-Infected-Removed (SEIR) epidemiological core, and simulated disease severity (DS) 
is translated into yield loss via four damage mechanisms, i.e., light stealers, assimilate sappers, senescence accelerators, 
and radia=on use efficiency (RUE) reducers. The crop component operates either as a simplified RUE-based internal 
engine compu=ng phenology, and a\ainable intercepted light, biomass, and yield, or by inges=ng a\ainable trajectories 
from external models and applying the damage mechanisms. FraNchEstYN also provides a fungicide module simula=ng 
=me-varying efficacy, automa=c crop and disease model calibra=on with diagnos=cs and uncertainty, and an output 
layer that harmonizes =me series and seasonal summaries, computes metrics, and op=onally generates decision-support 
messages with a large language model, all backed by reproducible vigne\es. We clarified model behavior through a 
global sensi=vity analyses, performed using the Morris method (Morris, 1991) extended by Campolongo et al. (2007). 
The analysis focused on parameters within the Suitability, Disease, and Damage modules across six AgMIP-wheat study 
loca=ons that span contras=ng environments (Asseng et al., 2019). The study specifically compared two pathogen 
"archetypes" with discordant ecophysiology: a rust-like, non-splashborne pathogen with short wetness requirements 
and high sensi=vity to dry interrup=ons, and a blast-like, splashborne pathogen with longer wetness requirements and 
weak dry-interrup=on sensi=vity. The performance of the framework were tested in four case studies with open data: 
yellow rust (Puccinia striiformis) in Egypt; Septoria (Septoria triXci blotch) in Indiana and Ethiopia; wheat blast 
(Magnaporthe oryzae pathotype tri=cum ) in Brazil. 

Results and Discussion 

The global sensi=vity analysis, performed across the six contras=ng loca=ons, demonstrated the plas=city of the 
FraNchEstYN framework in reproducing discordant epidemic development across pathogen types and environments. 
Simulated DS trajectories and yield losses varied widely across sites. In arid environments, pathogen suitability was 
modest and disease severity remained low for both archetypes. At temperate sites, the rust-like archetype exhibited 
high severity and yield loss, consistent with its adapta=on to humid condi=ons. In contrast, the blast-like archetype 
showed delayed suitability and lower severity in cooler environments, while reaching high severity in some temperate 
sites afer prolonged favorable condi=ons (precipita=ons). 



 
 

 

 

 
Figure 1. The framework's structure comprises external inputs (cyan boxes), core process modules (yellow boxes), and main outputs (white ellipses). 

Solid arrows indicate the main flow of information between modules (e.g., Crop, Disease, Damage), while dotted arrows highlight external inputs 
necessary for driving epidemiological and yield loss estimates 

Simulated DS, for both pathogen archetypes, was found to be highly sensi=ve to the parameters of the Suitability 
module, par=cularly those describing temperature responses, leaf wetness, and rela=ve humidity thresholds. This 
indicates that epidemic trajectories are strongly affected even by small varia=ons in these ecophysiological factors. 
Furthermore, DS simula=on showed a consistently high sensi=vity to the parameters controlling primary inoculum, 
especially for the rust-like pathogen, underlining the cri=cal importance of external infec=on sources. Conversely, the 
influence of parameters associated with secondary inoculum and epidemic clocks on variance was limited. 

For yield loss, the ranking of influen=al parameters was partly reshuffled, and parameters of the Damage module, which 
had no effect on simulated disease severity, gained prominence. In the blast-like archetype, yield loss remained most 
sensi=ve to temperature response parameters, followed by humidity and wetness thresholds. In contrast, for the rust-
like archetype, damage parameters acquired rela=vely higher influence, some=mes reaching importance comparable to 
suitability parameters. This shif reflects the closer coupling between epidemic development and yield reduc=on in rust 
epidemics, whereas blast-type epidemics were primarily constrained by environmental suitability. 

The model's ability to operate in diverse, real-world scenarios was confirmed by its evalua=on against the four dis=nct 
crop-disease case studies. The framework successfully simulated disease severity and corresponding yield loss under 
varied local condi=ons and crop managements, including crop resistance and fungicide applica=ons, and provides a 
strong proof-of-concept for the framework's robust predic=ve capacity. 

Acknowledgements 

The authors thank S. Savary, L. Willocquet, F. Giunta, V. Balmas, and E. Rossi for their insighrul support and the 
construc=ve exchange of ideas and informa=on during the development of this framework. 

 

 



 
 

 

References  
Asseng S., Martre P., Maiorano A. et al. (2019). Climate change impact and adaptaVon for wheat protein. Global Change Biology 25:155-173.  

Campolongo F., Cariboni J., Saltelli A. (2007) An effecVve screening design for sensiVvity analysis of large models. Environmental Modelling and 
So�ware 22:1509-1518.  

de Angelo L.G., Fabori Jr. I.M., Marin F.R. (2024). Coupling a dynamic epidemiological model into a process-based crop model to simulate climate 
change effects on soybean target spot disease in Brazil. European Journal of Agronomy 127361. 

Magarey R.D., Subon T.B., Thayer C.L. (2005) A simple generic infecVon model for foliar fungal plant pathogens. Phytopathology 95:92-100.  
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Effec=ve soil root explora=on is central to improving water uptake and yield, yet root system distribu=on remains a lesser 
explored dimension of crop improvement. This study integrates the Cycles agroecosystem model (Kemanian et al., 2024) 
with an evolu=onary algorithm to iden=fy op=mal maize root distribu=ons across the U.S. Midwest, offering a novel 
framework for algorithm-driven trait design. We evaluated how root architecture expressed the root func=onal 
distribu=on with depth influences water uptake dynamics and grain yield under clima=c condi=ons spanning historical 
(1980–2020) and future (2051–2075, 2076–2099) scenarios across the Midwest. 

The results reveal dis=nct spa=al pa\erns driven by clima=c gradients. Op=miza=on for 1980–2020 yielded four 
dominant phenotypes from top-heavy to balanced root distribu=on (Fig. 1). Precipita=on, subsoil plant-available water, 
and vapor pressure deficit (VPD) strongly influencing op=mal strategies. In we\er regions, the depth at which 50% of 
roots are located (D50) was ≈ 0.8 m, enabling access to water throughout the profile and increasing transpira=on by up 
to 33% and yield by 26% compared to non-op=mized phenotypes. In drier western zones, bimodal distribu=ons prevailed 
in the current climate, balancing access to surface summer precipita=on and subsoil water. These phenotypes limited 
transpira=on in wet years but preserved water for reproduc=ve stages, stabilizing yield across seasons. 

Under future climate scenarios, maize yields declined if hybrid phenology remained sta=c, despite increased 
precipita=on in some areas. Increased VPD was a key driver of yield loss, alongside shortened growing seasons and 
accelerated early-season water demand. Op=miza=on could only par=ally offset these losses. Future op=mal 
phenotypes clustered similarly to historical ones, though bimodal distribu=ons declined in favor of shallower or balanced 
architectures. 

This work highlights the poten=al of algorithm-based phenotype design tailored to regional hydric regimes to enhance 
water-use efficiency and resilience to climate variability. It illustrates the broader u=lity of op=miza=on algorithms in 
discovering site-specific adap=ve traits that can synergis=cally complement field experimenta=on and genomic selec=on 
in accelera=ng the development of site-specific and climate-resilient cul=vars. 
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Fig. 1. Op=mized root phenotype clusters and their geographic distribu=on for dis=nct clima=c scenarios. Cluster 1 = 
top-heavy, cluster 2 = bimodal, cluster 3 = mildly top-heavy, cluster 4 = balanced.   
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Introduc$on 

Precision agriculture aims to improve field management by accoun=ng for spa=al variability in dynamic cropping systems 
(CS). To support farmers in op=mizing crop management, it has become important to develop tools that capture both 
spa=al and temporal heterogeneity within crop produc=on. Mechanis=c crop models simulate aboveground biomass 
(AGB) accumula=on by explicitly represen=ng physiological and environmental processes linking absorbed solar 
radia=on, transpira=on, and nutrient uptake. However, these process-based models typically require site- and cul=var-
specific calibra=on and ofen fail to capture fine-scale variability. Assimila=ng remote sensing (RS) data into radia=on-
driven Produc=on Efficiency Models (PEM; Monteith, 1977; McCallum et al., 2009), offers a promising solu=on by 
providing spa=o-temporal explicit predic=ons of biomass growth, and thus crop requirements or responses. 

Materials and Methods 

A PEM was developed and implemented in a PostGIS database to run at a daily =me steps and with Sen=nel-2 (S2) 
resolu=on (10 x 10 m). Leaf Area Index (LAI), derived from the S2 biophysical processor (Weiss et al., 2020), was 
assimilated daily to es=mate the frac=on of intercepted solar radia=on by crops at pixel level via the Lambert–Beer law. 

The PEM was calibrated and evaluated for wheat and maize grown in the Po Valley (northern Italy) using two 
independent datasets. Calibra=on relied on 120 AGB observa=ons (2022-2023) from five different sites with different 
management prac=ces, while evalua=on was carried out on 312 observa=ons (2025) from four addi=onal sites. 

Although the temporal and spa=al dynamics of LAI should implicitly reflect the effects of limi=ng factors, a development 
stage-dependent Morris sensi=vity analysis (SA) was conducted to assess how varia=ons in LAI dynamics, air 
temperature, and senescence affect simulated AGB. 

Results and Discussion 
The simula=ons performed for each S2 pixel provide reliable es=mates of AGB. On evalua=on, the model achieved a 
rela=ve Root Mean Square Error of 0.23 and a model efficiency of 0.92, effec=vely capturing temporal and spa=al 
variability across and within the different CS (Figure 1). Assimila=ng LAI enabled the model to overcome common limits 
of process-based models that require site- and crop-specific tuning. SA highlighted that LAI accuracy during early growth 
stages strongly affects AGB predic=ons and in-season decisions. From stem elonga=on onward, radia=on use efficiency 
(RUE) and temperature responses became dominant drivers, with senescence adjustment from milk ripening stage 
preven=ng overes=ma=on at harvest. 



 
 

 

Figure 1. Top: maps of evaluation sites at harvest, showing the relative Root Mean Square Error (rRMSE) for each elementary sampling unit (ESU). 
Bottom: simulated crop growth over time (solid line) compared with observed data (points), with phenological stages indicated using the BBCH scale. 

Conclusions 

Integra=ng daily LAI assimila=on into a simplified radia=on-driven framework captured spa=al and temporal variability 
across crops, sites, management systems and seasons. Accurate early-season LAI es=mates are cri=cal, while RUE, 
temperature, and senescence primarily drive AGB growth in later stages. By assimila=ng RS data, the model overcomes 
common limita=ons of process-based approaches and provides a robust tool for monitoring crop produc=vity across 
heterogeneous CS. 
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Introduc$on 

Understanding spa=al and interannual varia=on in crop yield is crucial for effec=ve crop management under climate 
change. Quan=ta=ve models are widely used to evaluate climate-related impacts on food security (Jägermeyr et al., 
2021). To this end, diverse modeling approaches are applied, compared and some=mes combined (Leng & Hall, 2020). 
Process-based crop models capture underlying biophysical mechanisms – such as phenology, water balance and 
temperature response - and provide interpretable diagnos=cs, but they ofen exhibit systema=c biases and limited local 
calibra=on. Sta=s=cal models, such as linear models (LM) or random forests (RF) can outperform process-based models 
in interpola=on tasks; however, they lack mechanis=c interpretability and may perform poorly when extrapola=ng 
beyond observed condi=ons. Pragma=c approaches integrate different modeling methods to correct residual biases or 
combine predic=ons. 

Materials and Methods 

For 212 observa=ons of winter wheat (Tri=cum aes=vum ‘Capo’) yield, collected from field trials across Austria between 
2004 and 2024, corresponding gridded meteorological data (INCA; Haiden et al., 2011) were obtained. Each trial site was 
assigned to soil class of the Soil Map of the European Communi=es (Reinds et al., 1992). Yields were es=mated with two 
reference models, and six hybrid models created from combina=ons of the reference models with sta=s=cal models. 
Model performance was compared overall and for different combina=ons of yearly temperature and precipita=on sum 
levels. The crop model WOFOST (van Diepen et al., 1989)  was calibrated to observed phenology and yield data with 5-
fold cross valida=on (reference model 1). In addi=on, we es=mated yield with a random effects (RE) model using soil 
characteris=cs, weather covariates (growing degree days, precipita=on, frost days, heat days, global radia=on by 
phenological phase), their interac=ons, and a random effect for variety, as predictors (reference model 2).  

Subsequently, two classes of hybrid models explained yield with soil class, yearly precipita=on and temperature sums. 
For the augmented models, a RF model was complemented with the es=mated yields of the reference models as 
addi=onal explanatory variables (crop model RF augmented and RE-model RF augmented). For the residual correc=on 
models, the residuals of each reference model were fi\ed with the LM and RF model, respec=vely, and predicted values 
of these models were added to the es=mates of the reference model (crop model LM-residual-corrected, crop model 
RF-residual-corrected, RE-model LM-residual-corrected, RE-model RF-residual-corrected). All models were trained and 
tested using 5-fold cross valida=on. 

As metrics for model performance, Root Mean Square Error (RMSE), Pearson’s correla=on (R2), Bias, Absolute Bias and 
the Willmo\’s index as overall performance score were calculated. Performance was calculated for the whole dataset as 
well as within nine meteorological categories defined by the combina=on of low, medium and high levels of yearly 
precipita=on and temperature sums. Addi=onally, a category-averaged score was calculated as mean value of the metrics 
over the categories. To evaluate the effect of binning, three methods were used to define category breaks: quan=le-
based, standard devia=on-based, and equal-width approaches. 

 



 
 

 

Results and Discussion 

Overall, model performance according to Willmo\’s index was similar among the reference models (Figure 1A). The RE-
model achieved a higher R2, whereas the crop model showed slightly lower bias. Hybrid modelling further improved the 
crop model, with the best results obtained from residual correc=on using a linear model (LM). RMSE varied li\le across 
models. 

Model performance across meteorological categories, as measured by the average Willmo\’s index, is shown in Figure 
1B. Averaged across categories (column 1), the RE-model outperformed the crop model, although the crop model 
achieved higher performance in 5 of 9 categories and was further improved through LM and RF residual correc=on. 
Models generally performed be\er in categories with medium to high precipita=on and temperature levels. Results 
shown in Figure 1 are based on the quan=le binning approach. Absolute values of model performance metrics were 
influenced by the chosen binning approach. However, for all approaches, the LM-residual corrected crop model 
performed.  

 

 
 

 Figure 1. A: Model performance metrics for the whole dataset with Willmott’s index as labels. B: Willmott’s index averaged over meteorological 
categories and within each quantile-defined category 

Conclusions 

While data-driven sta=s=cal models achieve high overall accuracy in predic=ng wheat yields for a given dataset, process-
based crop models can outperform them under diverse meteorological condi=ons, such as certain temperature and 
precipita=on regimes represented in the data. Hybrid approaches retain the mechanis=c interpretability of crop models 
while improving predic=ve performance. The results further highlight condi=ons, such as cool and dry periods, where 
model performance could be improved. 
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Introduc$on 
Crop Growth Simula=on Models (CGSMs) are versa=le tools for forecas=ng yields, assessing climate impacts, and 
suppor=ng resource management. Rooted in decades of agricultural knowledge, they provide explainable, theory-based 
predic=ons. Nevertheless, tradi=onal CGSMs ofen face challenges related to parameteriza=on, incomplete 
representa=on of complex processes, and limited ability to fully leverage large-scale datasets.  Data-driven models have 
emerged as alterna=ves but face limita=ons in interpretability and data demands. In geosciences, differen=able 
programming, embedding gradient-based op=miza=on into scien=fic models, has successfully bridged data-driven and 
process-based approaches, enabling large-scale data assimila=on and hybrid modelling (Gelbrecht et al., 2023; Shen et 
al., 2023; Tsai et al., 2021). Yet, such approaches remain largely unexplored in agriculture due to the legacy 
implementa=on of CGSMs. 
Materials and Methods 
We aim to advance crop growth modelling by re-implemen=ng WOFOST, a widely used process-based crop growth 
model (de Wit et al., 2019), as a differen=able model. This enables gradient-based parameter es=ma=on, scalable data 
assimila=on, and replacement of ill-posed modules with AI components, while ensuring compa=bility with exis=ng 
WOFOST workflows. The implementa=on is based on PyTorch, suppor=ng automa=c differen=a=on, GPU/TPU 
accelera=on, and HPC deployment. The framework is openly available at h\ps://github.com/WUR-AI/diffWOFOST. 
 

 

https://github.com/WUR-AI/diffWOFOST


 
 

 

Results and Discussion  
The differen=able WOFOST framework is currently under development and will be demonstrated through three 
dis=nct use cases. The first use case focuses on spa=ally explicit yield forecas=ng across all arable parcels in the 
Netherlands (2017–2024), integra=ng satellite-derived leaf area index data to evaluate the capacity of differen=able 
parameter learning for large-scale calibra=on. The second use case applies our framework in AgML benchmarks, 
focusing on yield predic=on under climate change scenarios and subna=onal yield forecas=ng (Paudel et al., 2025), 
thereby situa=ng our approach within state-of-the-art machine learning compe==ons. Our third use case explores 
computa=onally intensive applica=ons such as reinforcement learning for crop management and agricultural digital 
twins, where the efficiency gains of vectoriza=on and hardware accelera=on allow more extensive experimenta=on 
than current implementa=ons permit. Collec=vely, these demonstra=ons aim to illustrate how differen=able 
programming can overcome long-standing calibra=on bo\lenecks, enhance integra=on with remote sensing, and 
facilitate process-centric hybrid modelling. 
 
Conclusions 
Differen=able programming provides a promising approach to combining established process-based knowledge with 
AI-driven flexibility. The differen=able WOFOST model is designed to offer interpretable, generalizable, and 
computa=onally efficient simula=ons, and may serve as a founda=on for further research in precision agriculture, food 
security, and crop breeding. 
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Introduc$on 
Process-based crop models encapsulate agronomic knowledge in modular components, yet structural heterogeneity 
across modelling plarorms constrains component reuse (Donatelli et al., 2014). Decoupling the scien=fic logic of the 
model from plarorm architecture is a prerequisite for reusability (Holzworth et al., 2010). In response, the framework 
Crop2ML serves this purpose by represen=ng components through a set of seman=c metadata and by implemen=ng a 
bidirec=onal transpila=on process between plarorm and CyML languages (Midingoyi et al., 2023). Crop2ML relies on 
manual cura=on of seman=c metadata, which is prone to errors and =me consuming. Recent advances in large language 
models (LLMs) have shown their ability to extract meaningful content from source code using seman=c context (Jelodar 
et al., 2025). Here we aim to facilitate the cura=on of seman=c metadata by integra=ng LLM into the Crop2ML 
framework. 

Materials and Methods 
We designed a reproducible LLM-assisted Python workflow to semi-automa=cally generate Crop2ML components from 
legacy crop model code, by extrac=ng and genera=ng structured seman=c metadata, and by transpiling code into 
CyML (Figure 1). 



 
 

 

 
Figure 1. Schema of the LLM-assisted workflow transforming a crop model component into a Crop2ML component. 

Our workflow has been evaluated on two use cases: (UC1) 8 soil temperature components drawn from 6 widely used 
crop modelling plarorms (from the Agricultural Model Exchange Ini=a=ve; Martre et al., 2018) to represent a range of 
programming languages and code architecture; and (UC2) 12 subcomponents (simple strategies) from an energy 
balance model component implemented in the modeling framework BioMA. The evalua=on of the workflow was 
based on ground-truth Crop2ML components created by experts of each plarorm. Retrieval metrics and classifica=on 
checks were used to iden=fy input/output variables and the consistency of their specifica=ons. Recognizing the non-
determinis=c outputs of LLMs, the workflow was executed in 10 independent runs to report variability. 

 

Results and Discussion 
Evalua=on across UC1 components demonstrated over 75% accuracy in input extrac=on, and over 90% accuracy in 
output extrac=on (for 6 out of 8 components). Evalua=on on UC2 showed over 80% for both precision and recall. 
Classifica=on of data type highlighted a near perfect score for each component and the workflow successfully inferred 
plausible metadata when documenta=on was ambiguous or incomplete.  

Good results are con=ngent on explicit code structure, well-encapsulated components and rich contextual 
documenta=on, whereas components with numerous variables produced higher false posi=ves. Prac=cally, the workflow 
reduces manual annota=on =me (around two minutes per component) but s=ll requires human verifica=on to correct 
errors and to validate classifica=ons. The adop=on of transparent coding standards and thorough documenta=on, 
alongside a human-in-the-loop process, contributes substan=ally to improved reliability. 

Conclusions 

This study demonstrates that a LLM-driven workflow can semi-automa=ze the transforma=on of crop model 
components from heterogeneous plarorms into a shared interoperable representa=on (e.g. Crop2ML). The approach 
should be understood as an accelerator for the genera=on of interoperable components that can require manual 
correc=on, but enable broader interoperability across the crop modelling community. To maximize accuracy and 
reproducibility, best prac=ces include supplying comprehensive source code and documenta=on. 
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Introduc$on 
Crop growth models (CGMs) are important tools for understanding genotype-by-environment-by-management (G×E×M) 
interac=ons. Process-based CGMs such as WOFOST (Van Diepen et al., 1989) build on decades of physiological research, 
but their many parameters and calibra=on requirements limit large-scale use, e.g., in plant breeding. To address this 
issue, we apply the Sparse Iden=fica=on of Nonlinear Dynamics (SINDy) (Brunton et al., 2016), which combines data-
driven model discovery with expert knowledge. In this framework, the user guides model iden=fica=on by specifying 
relevant environmental drivers and choosing the set of candidate func=ons. This combina=on of data-driven flexibility 
and physiological insight enables compact models that are both accurate and interpretable. 

Materials and Methods  
SINDy extracts compact systems of ordinary differen=al equa=ons (ODEs) from =me series of crop and environment 
data. Candidate basis func=ons are selected by the user, and sparse regression is employed to select the minimal set 
needed to describe the dynamics. As a proof of concept, we used in silico WOFOST simula=ons (De Wit, 2018) of potato 
(five cul=vars across mul=ple years). Our analyses focused on the simulated leaf area index (LAI) and dry weight of 
storage organs (WSO), although the approach is readily applicable to UAV- and sensor-based traits as well. Robustness 
and generaliza=on were assessed with leave-one-year-out cross-valida=on (LOYOCV). 

Figure 1. Workflow of the proposed SINDy-based approach. Data sources (e.g., remote sensing and environmental sensors) provide Vme series of 
crop traits (e.g., leaf area index L(t), storage organ weight S(t)) and environmental drivers (e.g., temperature T(t), soil moisture M(t)). Sparse 

regression on nonlinear, user-selected basis funcVons (collected in the matrix D) idenVfies compact ordinary differenVal equaVons that together 
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form a reduced-order, data-driven crop growth model. This reduced-order CGM captures crop growth dynamics directly from data while retaining 
interpretability through explicit physiological terms and coefficients. 

Results and Discussion 
The compact models (10–30 terms) iden=fied by SINDy reproduced WOFOST-simulated growth with R² > 0.9 and RMSE 
within 2–4% of simulated dry weight of storage organs. This highlights the method’s strength: governing equa=ons were 
learned directly from data, while user knowledge guided the selec=on of environmental drivers. The resul=ng models 
produced physiologically meaningful terms, such as soil moisture × temperature effects, that remained largely consistent 
across environments and cul=vars, sugges=ng that the coefficients could serve as quan=ta=ve descriptors of genotype-
specific dynamics. Current limita=ons are weaker performance for LAI dynamics, especially during senescence, and the 
fact that results are based on in silico data; valida=on with empirical phenotyping datasets will be essen=al for real-
world applica=ons. 

Conclusions 
SINDy provides a framework for iden=fying compact, interpretable crop growth equa=ons directly from data. By 
combining physiological insights with data-driven flexibility, it supports integra=on of novel data streams such as high-
throughput phenotyping and remote sensing, while retaining interpretability. This suggests a pathway toward hybrid 
crop models that are interpretable and scalable across many genotypes, enabling approxima=on of crop growth 
dynamics for en=re breeding popula=ons rather than single cul=vars. 
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Introduc$on  
Crop Models (CMs) are used to understand, analyze and predict crop responses to environments. There has been an 
increased effort for CMs to be\er capture the genotype x environment interac=ons (GxE) especially with the rising risk 
of water shortage and other extreme clima=c scenarios due to climate change. One of the targeted goals being to define 
realis=c and achievable ideotypes for tomorrow based on the gene=c diversity available today.  
Although CMs are becoming increasingly mechanis=c, with explicit integra=on of gene=c variability, important 
limita=ons remain. First, genotype-specific parameters (GSPs) ofen mix species-level constants and genotype-level 
variability, making it difficult to disentangle the gene=c basis of crop performance (Boote et al., 2021). Second, many 
widely used parameters are emergent outcomes of mul=ple processes rather than direct gene=c traits, which limits their 
physiological interpretability for gene=cists and breeders (Parent & Tardieu, 2014). Finally, current CMs ofen require a 
process of es=ma=on of the GSPs, leading to possible equifinality and other limita=ons, which complicates its 
combina=on with gene=cs (Lamsal et al., 2018). 

The ul=mate goal of this work is to develop a generic sorghum - maize crop model, explici=ng the genotypic variability 
of both species with a common set of GSPs. Here, we present the methodology we developed to build the maize 
components of phenology and development based on the SiriusQuality modeling framework (Martre et al., 2006). We 
developed independent components using the Crop2ML formalism (Midingoyi et al., 2021), grounded in a robust 
parameter set derived directly from measurements and supported by ecophysiological formalisms that represent the 
observed genotypic variability within a panel of maize hybrids. 

Materials and Methods  
Our approach relies on the mul=-scale integra=on of traits measured under complementary experimental condi=ons. 
Traits were collected both in controlled phenotyping plarorms and in field experiments (Fig. 1). These observa=ons were 
then linked through ecophysiological formalisms describing the underlying processes. The formalisms are designed to 
allow the genotypic parameters to be directly measured, or calibrated using observa=on of traits related to the 
subprocess they represent. (i.e. Final leaf number measured directly, leaf elonga=on rate parameters op=mized using 
the observed dimension of an individual leaf)  



 
 

 

Figure 1. SchemaVc representaVon of the modelling approach using this work. 

 

The resul=ng model components were evaluated with independent field datasets. Evalua=on emphasized not only final 
outputs such as LAI or anthesis date, but also dynamic variables and intermediate states (e.g., leaf =p appearance, leaf 
ligula=on, individual leaf size). All developments were implemented within the Crop2ML framework, ensuring 
modularity and reusability. 

Results and Discussion 
The developed Crop2ML components represen=ng maize phenology and development allowed a good representa=on 
of the observed diversity of output variables such as anthesis date and LAI, as well as dynamic observa=ons of 
intermediate states. The described methodology permi\ed the development of a model defined with GSPs, computed 
from observed data, that have a clear physiological meaning and are representa=ve of the gene=c variability observed 
in the different simulated processes. Importantly, we iden=fied a minimum set of observable traits required to compute 
GSP values that capture genotype-specific variability for phenology and development. By formalizing the link between 
measured traits and process-based model parameters, the approach advances toward disentangling gene=c effects from 
environmental influences in crop modeling.  

Conclusions 

By integra=ng phenotyping and field data through ecophysiological knowledge, and by grounding parameteriza=on in 
measurable and stable traits, this work ul=mately supports the defini=on of ideotypes for future climates as it facilitates 
the dialogue between modelers, gene=cists, and breeders by providing a transparent and physiologically meaningful link 
between gene=c variability and crop model parameters. 
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Introduc$on 
Agricultural models have to offer the scien=st the possibility to create highly diverse models (modelling solu=ons) 
combining model components from different domains seamlessly. As we look to develop more general digital workflows 
and processing pipelines, the ability to ‘s=tch’ together useful features exis=ng in disparate tools could be very useful.  
To support exchange of models for streamlined model component intercomparison and improvement between research 
groups and modelling plarorms, the Agricultural Model Exchange Ini=a=ve (AMEI; h\p://crop2ml.org) has recently 
developed an open-source modeling framework (named Crop2ML) for exchanging and reusing crop model components 
between modeling plarorms (Midingoyi et al., 2023). Crop2ML facilitates por=ng from one modeling environment to 
another of code represen=ng a specific biophysical process thanks to bi-direc=onal code transforma=on, allevia=ng the 
need to program a new process into a model from scratch.  

In this study, we focused on the modeling of soil temperature. Soil temperature determines the rate of key plant (e.g. 
germina=on, emergence =ming, and root growth) and soil (e.g. N mineraliza=on, greenhouse gas emissions, and carbon 
sequestra=on) processes that are essen=al to predict the adapta=on to and impact of climate change, extreme weather 
events, and new agronomic prac=ces (e.g. intercropping, mulch, direct sowing, or sowing arrangement). However, a 
recent maize models intercomparison study (Kimball et al., 2024) has revealed large intermodel variability in simulated 
soil temperature. In that study, the authors could not separate the uncertainty of the soil temperature models from the 
errors in soil temperature model inputs simulated by the maize models in which they were integrated. Here, we used 
the capability offered by Crop2ML to separate the two sources of uncertainty and to intercompare different soil 
temperature models across crop models. This work provides deeper experience in applying Crop2ML to crop models 
and is a runway for more general outcome. 

 

 

 



 
 

 

Materials and Methods 

We exchanged nine soil temperature models (APEX, Campbell, DSSAT ST, EPIC, MONICA, Parton-SWAT, SWAT, 
SiriusQuality, and STICS) across six modeling plarorms (APSIM, BioMA, DSSAT-CSM, MONICA, SIMPLACE, and 
SiriusQuality). Ini=ally, the models were implemented as standalone drivers within each plarorm to verify consistent 
results with the original code and perform a global sensi=vity analysis to their drivers (inputs). We then integrated all 
soil temperature models into wheat crop models within each modeling plarorm and evaluated them over a nine-year 
fallow period in Ames, USA.  

  



 
 

 

Results and Discussion 

We demonstrated Crop2ML's prac=cal applica=on with a use case focused on soil temperature models, a cri=cal driver 
of cropping system responses to climate. The sensi=vity analysis revealed significant discrepancies in simulated soil 
temperature among the models and their sensi=vity weather condi=ons and climate, to soil type, soil water content, 
and ground cover (Fig. 1).  

 

 
Figure 1. Soil depth versus soil temperature for diffferent days of the years (doy) at Montpellier, France, in sandy loam, sand, silty clay, and silty 

loam soils simulated with nine soil temperature models. Data are 30 years averages for dry bare soils.  

The simula=on results from the Ames bare soil experiments demonstrated that errors in simulated soil temperature 
model drivers can be a major source of soil temperature uncertainty. As a result, the performance of the soil temperature 
models strongly depended on the crop model in which they were integrated, illustra=ng the importance of calibra=ng 
and evalua=ng model components in standalone drivers independently of larger modeling solu=ons.  

Conclusions 
Our findings demonstrate Crop2ML’s usefulness and poten=al to support and accelerate crop models' improvement 
through model component exchanges, addressing stakeholders' evolving needs. 
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