
 

 

 

 



 

 

 

Decision making and innova/on support  

Process-Based Detec/on of Drought Stress at Scale: Insights from Silage Maize and Winter 
Wheat Dynamics in Germany 

Bondad Jamina*1, Ghazaryan Gohar1,2, Escueta Rachel3, Nendel Claas1,4,5,6 

1 Leibniz-Centre for Agricultural Landscape Research (ZALF), Simula@on and Data Science, 15374, Müncheberg, Germany, jamina.bondad@zalf.de  
2 Humboldt-Universität zu Berlin, Geography Department, 12489, Berlin, Germany 
3 Leibniz-Centre for Agricultural Landscape Research (ZALF), Compu@ng and Data Services, 15374, Müncheberg, Germany 
4 Ins@tute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany 
5 Global Change Research Ins@tute CAS, Brno, Czech Republic 
6 Integra@ve Research Ins@tute on Transforma@ons of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany 

Keywords: drought stress threshold, transpira5on deficit, crop resilience, recovery, MONICA 

Introduc5on  

Drought remains one of the most crucial threats to agricultural produc4vity, with its 4ming and severity causing profound 
impacts on crop development and yield (Zhang et al., 2023; Fuad-Hassan et al., 2008). Large-scale, crop-specific 
assessments of drought stress 4ming and severity remain scarce, par4cularly those linked to yield-determining processes 
(Riedesel et al., 2023); yet the need to accurately detect when and how major crops experience water deficits on this 
scale is growing, as tailored coping strategies must be developed. Building on this research gap, this study uses an 
indicator derived from a process-based agro-ecosystem model to inves4gate the spa4o-temporal dynamics of drought 
stress. The study employs the daily transpira4on deficit (Tdef) as the ra4o of actual to poten4al transpira4on rela4ve to 
a defined drought stress threshold (DST) for silage maize and winter wheat across Germany. The analysis spans diverse 
soil and clima4c condi4ons, offering insights into how stress 4ming, severity and recovery poten4al have historically 
influenced yields. By characterising the stress paSerns across growth stages and linking them to final yield outcomes, 
we aim to uncover cri4cal windows of vulnerability and resilience, and to develop a crop-specific drought assessment 
framework which can be applied in a digital-twin environment to enable scenario-based explora4on of climate, 
management, and policy interven4ons. 

Materials and Methods  

To assess drought stress and crop development dynamics, we employed the MONICA crop model 
(hSp://monica.agrosystem-models.com/; Nendel et al., 2011), which simulates daily physiological processes with stage-
specific parameters. The model was applied at a 100 x 100 m2 grid to simulate condi4ons across three German federal 
states: Brandenburg (2005-2022), North Rhine-Westphalia (2019-2023), and Lower Saxony (2021-2023). Simula4ons 
were conducted under two scenarios: i) water-limited, and ii) non-stressed (control), to compare crop responses under 
water-limited and op4mal moisture condi4ons for winter wheat and silage maize. Daily weather inputs, such as 
minimum and maximum temperature, global radia4on, wind speed, rela4ve humidity, and precipita4on, were used to 
drive the simula4ons. Model outputs include daily values for Tdef, across different crop development stages (Table 1). A 
Tdef value of 1.0 reflects no deficiency for the crop and values below DST signal the onset of physiological drought stress. 
The observed district-level (NUTS3) yield data were incorporated for drought impacts and crop resilience analysis. To 
inves4gate how the 4ming and severity of drought events interact with crop-specific sensi4vity during different growth 
stages to influence yield variability, we applied mixed-effects sta4s4cal models.  

Table 1. Description of the development stages 1 to 6 for winter wheat and 1 to 7 for silage maize in MONICA. 

http://monica.agrosystem-models.com/


 

 

 

Stage Winter wheat Silage Maize 

1 Sowing to Emergence Sowing to Emergence 

2 Emergence to Double ridge Emergence to Shoo@ng 

3 Double ridge to Flowering Shoo@ng to Tasselling 

4 Flowering to Grain filling Tasselling to Flowering 

5 Grain Filling Flowering to Grain filling 

6 Senescence Grain filling 

7 - Senescence 

 

Results and Discussion  

The mixed-effects models for silage maize and winter wheat reveal that drought stress during reproduc4ve stages 
significantly reduces yield, although the 4ming and severity differ between crops (Figure 1). Despite the high number of 
dry days during the early stages, i.e., stage 2, drought had liSle effect on yield, likely due to low crop water demand and 
crops having recovered later through compensatory growth. For winter wheat, stress during stage 4 (Flowering to Grain 
filling) was the only stage with a sta4s4cally significant nega4ve effect on yield (Es4mate = - 0.084, t = - 3.73), highligh4ng 
its sensi4vity during this narrow window (Figure 1b). On the other hand, maize showed a broader vulnerability: stress 
during stage 3 (Shoo4ng to Tasselling) and especially stage 4 (Tasselling to Flowering) had strong nega4ve impacts 
(Es4mate = - 0.257 and - 0.728, respec4vely), reflec4ng the crop’s dependence on water for successful pollina4on and 
kernel set. Random effects in both models underscore the influence of spa4al and temporal variability, with maize 
showing par4cularly high varia4on across regions (SD = 7.10) and years (SD = 3.73). These findings suggest that while 
wheat’s drought sensi4vity is concentrated around flowering, maize requires sufficient water supply across a wider 
developmental window during dry condi4ons. Moreover, the posi4ve associa4on between Tdef and yield ra4o (actual 
over poten4al yield) in both crops (data not shown) supports the use of Tdef as a reliable physiological marker of drought 
resilience. 

 

 
Figure 1. (a) Distribution of drought stress events across crop growth stages for silage maize and winter wheat and (b) effect of drought stress at 

different growth stages on crop yield. 

(a) (b) 



 

 

 

Conclusions  

Understanding drought-induced stress and crop resilience is fundamental to improving model-based assessments of 
agricultural produc4vity under climate variability. While the current drought monitoring tools rely on meteorological 
and soil moisture condi4ons, our framework uses crop-specific signals to iden4fy periods of prolonged stress which 
disrupt physiological processes for each development stage or, conversely, to detect when adequate water availability 
restores normal crop growth. Beyond retrospec4ve analysis, such process-based assessment of drought stress also 
provides the founda4on for digital twin applica4ons in agriculture, where crop models can be coupled with Earth 
observa4on data to explore what-if scenarios. By linking physiological stress dynamics with yield outcomes, these 
simula4ons enable users to test the implica4ons of alterna4ve climate trajectories, management prac4ces, or policy 
interven4ons, thereby enhancing the ability to an4cipate risks and support resilience-oriented decision making at scale. 
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Introduc5on  

Agroforestry systems (AFS) as the inten4onal integra4on of trees into cropping systems—encompasses diverse 
indigenous, tradi4onal, and modern farming prac4ces (Terasaki Hart et al. 2023; Nair 1991). It provides mul4ple 
agronomic, environmental, and socio-economic benefits, including improved soil health, climate resilience, and 
biodiversity (Beillouin et al. 2019; Beillouin et al. 2021). As a nature-based solu4on, agroforestry sequesters carbon and 
reduces greenhouse gas (GHG) emissions, suppor4ng both climate mi4ga4on and adapta4on (Griscom et al. 2017). 
However, trees may also introduce compe44on for light, water, and nutrients, poten4ally reducing crop yields if not well 
managed (Gibson et al. 2011). Therefore, op4mized site-specific agroforestry design is essen4al to balance trade-offs 
and harness synergies (Blaser et al. 2018). 

Materials and Methods Calibri pt 10 

This study presents a hybrid framework that integrates process-based models (PBMs), machine learning (ML), and life 
cycle assessment (LCA) into a decision support system (DSS) for designing and evalua4ng agroforestry systems. Mul4-
scenario simula4ons with the 3D PBM Hi-sAFe were conducted for maize–poplar alley cropping across 16 configura4ons 
varying in la4tude (30–60°) and tree row orienta4on (0–135°). Outputs included crop yields (4.3–8.1 t ha⁻¹), N₂O 
emissions (1.6–9.4 kg N ha⁻¹), and land equivalent ra4os (LER consistently >1, up to 1.29), highligh4ng agroforestry's 
poten4al to improve land-use efficiency. These data were used to train supervised ML algorithms (Random Forest, ANN, 
XGBoost). Feature aSribu4on (SHAP) iden4fied temperature, distance from tree strips, and intercepted radia4on as 
primary predictors of yield and N₂O dynamics. 

To address data scarcity, Long Short-Term Memory (LSTM) and TrAdaBoost-LSTM models were employed for 
spa4otemporal gap-filling and forecas4ng of microclimate variables. 

Results and Discussion  

This integra4on reduces computa4onal costs of repeated simula4ons while enabling accurate predic4ons in data-
limited sevngs. Model outputs were coupled with LCA workflows to calculate sustainability indicators (CO₂-equivalent 
emissions, nitrogen footprints, soil organic carbon changes, and water-use efficiency). These were incorporated into a 
web-based DSS that allows expert and non-expert users to explore alterna4ve agroforestry designs, evaluate trade-
offs, and assess na4onal-scale greenhouse gas mi4ga4on poten4al (Figure 1).  

A Germany-wide applica4on illustrates the significant contribu4on of agroforestry to climate-smart land management. 
This hybrid PBM–ML–LCA approach represents, to our knowledge, the first opera4onal DSS for agroforestry, combining 
scien4fic robustness with prac4cal usability. It demonstrates that agroforestry can surpass monocultures in 



 

 

 

produc4vity and sustainability when site-specific op4miza4on is applied, providing a scalable founda4on for policy 
support and decision-making under climate change. 

 
Figure 1. Integrated representation of the hybrid crop modeling workflow. (A) Input data (soil, weather, trees, crops, macroclimate) processed 
through the Hi-sAFe model to simulate tree–crop interactions, generate multi-scenario outputs, and feed machine learning models (RF, ANN, LSTM) 
for yield and greenhouse gas predictions. (B) Mechanistic structure of the Hi-sAFe process-based model, showing its 3D voxel grid representation 
with periodic boundary conditions, tree phenology dynamics, light interception, water and nitrogen cycling, and below-ground growth processes 
that drive daily simulation outputs. 

Conclusions 

Results show that agroforestry can surpass monocultures in land-use efficiency, but context-specific op4miza4on is 
essen4al. Future work should expand to diverse environments, species, and longer 4meframes to fully capture long-
term resilience. This framework provides a scalable founda4on for opera4onal, climate-smart agroforestry planning 
and policy support. 
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Introduc5on  

Farm size in Europe and around the world is growing, which means any individual farmer is managing areas of >50 ha 
and tens to hundreds of fields. Crop growth models can help forecast yields and simulate possible effects of addi4onal 
irriga4on/fer4lizer applica4on. However crop growth models do not model all processes ongoing in the field, for example 
pests and diseases can reduce LAI and soil compac4on can limit roo4ng depth. A digital twin uses in-season observa4ons 
of modelled state variables (LAI, soil moisture) to correct/adjust the model states. Although much further tes4ng is 
needed, one may expect superior accuracy of a digital-twin compared with a classical crop growth model. To date, most 
digital-twins in the agricultural domain have been limited to the “predic4ve” type (Verdouw et al. 2021), i.e. for accurate 
yield forecas4ng. For decision support for farmers an addi4onal element is needed, the element of scenarios:  

• What yield if from today onwards I do not apply extra irriga4on/fer4lizer? (baseline scenario) 
• What yield if from today onwards I do apply extra irriga4on and/or fer4lizer? 
• Is the yield gain worth the extra cost of irriga4on/fer4lizer? 

A digital-twin that on top of forecas4ng addresses these ques4ons is some4mes called a “prescrip4ve” type (Verdouw 
et al. 2021). Although strictly these scenarios are not prescrip4ve. These scenario’s do not prescribe the farmer what to 
do. Farmers can use these scenarios in combina4on with farmgate prices and costs of irriga4on to decide if a net profit 
can be made. Only if the yield gain is sufficiently large, farmgate prices high and costs low, only then it will be financially 
profitable to apply extra irriga4on. Here for one of the first 4mes we present such a “prescrip4ve” digital-twin. 

Materials and Methods 

A potato digital-twin was constructed using the DFF/NMODCOM modelling playorm (van Evert et al 2021), with the 
Tipstar potato crop growth model (van Oort et al 2024). We modelled the Van den Borne potato farm, a large 
Dutch/Belgian farm with annually  more than 200 potato fields. Loca4on, cul4var, plan4ng date, fer4lizer applica4ons 
and irriga4on applica4ons were obtained through the Van den Borne business administra4on system, retrieved through 
an automated data connec4on to the farmmaps playorm (Been et al 2023). Loca4on specific weather, soil and satellite 
observa4ons were provided by the farmmaps playorm. Forecasts were made using ensembles of (1) 2025 weather 4ll 
the predic4on date, (2) the 14 days weather forecasts and (3) weather of a past year. For data assimila4on the Ensemble 
Kalman filter was used. Simula4ons were automa4cally run on a daily basis for the 200 fields, each field being simulated 
3*30*4 4mes, for 3 randomly sampled of model parameter sets, 30 years of historical weather and 4 crop management 
scenarios. In visualisa4ons for individual fields forecas4ng uncertainty was visualised as a plume with median and 
confidence interval. For farm level summaries (shown below) we present median values. Forecasts were presented for 
3 modelled variables: water stress, nitrogen stress and yield. 

Results and Discussion 

Figure 1 shows the 14 August 2025 forecast. It shows forecasted drought and nitrogen deficit, for the date on which the 
simula4ons were made and for the immediate future (7 days a{er). Figure 1 shows the baseline scenario with crop 



 

 

 

management as applied so far and no future addi4onal irriga4on/fer4lizer. The figure shows which fields are already 
under water stress or risk running out of water in the very near future. Figure 2 shows scenarios: 

1. if from today onwards extra nitrogen were applied without extra irriga4on, impact on yield would be zero so there 
is no need for extra fer4lizer applica4on; 

2. if from today onwards extra irriga4on were applied without extra fer4lizer, some yield gain is s4ll possible. At this 
stage in the growing season in mid August the crop is already senescing therefore possible yield gain is rela4vely 
small. 

 
Figure 1. Example forecasts by a predictive digital-twin. Left column: crop field names. Middle coloured columns: simulated stressindex as crop 

water/nitrogen demand divided by soil water/nitrogen supply. Right column: yield forecast in the scenario with from the simulation date onwards 
(2025-08-14) no extra irrigation/fertilizer applied. 

 

 
Figure 2. A prescriptive digital-twin builds upon Figure 1 and additionally shows what yield gains are still possible if from  the simulation date 

onwards (2025-08-14) extra irrigation/fertilizer were applied. 

Conclusions 

This work presents an opera4onal digital twin for decision support in potato farming. The digital-twin can simulate 
“what-if” scenarios for priori4sing and deciding in which out of many fields to apply extra irriga4on and fer4lizer. 
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Introduc5on 

Farmers increasingly rely on op4cal satellite-based maps to apply crop protec4on as well as fer4lizer products at variable 
rates in response to heterogeneous crop growth condi4ons in the field. Prolonged cloud coverage, however, severely 
affects the 4mely provision of these map products, forcing the farmers to either rely on poten4ally outdated maps that 
do not reflect the current crop stand variability in the field, or recede to flat rate applica4ons altogether.  

The cloud-free vegeta4on monitoring product ‘Biomass Proxy’ (BP) from the Planet Labs PBC (San Francisco, California, 
USA) addresses this problem of prolonged cloud coverage by integra4ng cloud-resistant synthe4c aperture radar (SAR) 
images (Sen4nel-1) and high spa4al-resolu4on mul4spectral images (Sen4nel-2 and PlanetScope) (Planet Labs Inc., 
2025). While the BP product provides near-daily raster maps at 10-m resolu4on, it is a rela4ve measure of aboveground 
crop biomass in value ranges between 0 and 1 (Burger et al., 2024, Guillevic et al., 2024), rather than absolute leaf area 
index (LAI) values which are cri4cal to many precision-agriculture prac4ces.  

The variable rate applica4on (VRA) advisor integrated into BASF Digital Farming’s so{ware tool xarvio Field Manager® 
issues field-scale recommenda4ons on number of applica4on zones based on field heterogeneity as well as 
recommenda4ons on product rates. These recommenda4ons are based on absolute LAI values. This study aims to use 
the LAI development es4mated by a dynamic crop growth model to elevate the Biomass Proxy map from a daily-available 
product indica4ng rela4ve differences in aboveground crop biomass to a daily-available product that indicates within-
field absolute differences in crop LAI, hereby allowing the xarvio Field Manager® to reliably offer maps in its VRA advisor 
at high temporal resolu4on. 

Materials and Methods 

We used the LINTUL5 model implemented in the modeling framework SIMPLACE (see Enders et al., 2023 for a detailed 
overview over the framework) to simulate daily LAI development in fi{y winter wheat and winter barley fields across 
Germany, planted in autumn 2024 and harvested in summer 2025. Similar to the Weighted Mean approach presented 
in Tewes et al. (2020), a model ensemble was generated that simulated different LAI development trajectories from 
sowing date un4l the acquisi4on date of the BP map to be converted, by perturbing a set of parameters including the 
rela4ve increase in LAI during juvenile stage, soil water content at simula4on start and maximal roo4ng depth, among 
others. 

LAI maps derived from Sen4nel-2 mul4spectral imagery acquired prior to the BP acquisi4on date were used to filter 
ensemble runs that best represent the satellite-es4mated LAI development over 4me for quan4les 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8 and 0.9 (with q 0.9 assumed to represent op4mal plant growth, and q 0.1 to represent restricted plant 
growth). 



 

 

 

Pixel values for the same quan4les were extracted from the BP maps. A linear regression model was created by rela4ng 
the respec4ve quan4le LAI values extracted from the crop growth model runs on the day of the BP acquisi4on to the BP 
quan4le values themselves. Subsequently the regression model was used to convert the BP values into LAI es4mates. To 
examine the effects of Sen4nel-2 image unavailability on the ensemble filtering, images were withheld for periods of 10, 
15, and 20 days before the BP acquisi4on date. For each field, the most recent Sen4nel-2-derived LAI maps were selected 
for March (LAI values ranging from 0.8 to 1.5), April (values between 2 and 5), and May (values between 2 and 6). These 
LAI values were then compared with those obtained from the corresponding converted BP maps. We evaluated the 
number of predicted LAI values within ±0.5 and ±1 of the observed LAI, and noted instances where our method 
overpredicted LAI, poten4ally leading to slightly higher product rates. 

Results and Discussion 

The primary outcomes of this model fusion approach are summarized below, focusing on the agreement between the 
converted Biomass Proxy-derived LAI values and the reference LAI values from Sen4nel-2 images (Table 1). Our 
evalua4on highlights both the robustness and limita4ons of the crop growth model-based conversion methodology 
under varying scenarios of Sen4nel-2 image availability prior to the BP acquisi4on date. 

The propor4on of predicted LAI values falling within ±0.5 and ±1 of the observed LAI was generally high when recent 
Sen4nel-2-derived LAI maps were available, par4cularly during the main phases of crop development in spring. However, 
as the gap between the last available Sen4nel-2 image and the BP acquisi4on date increased, predic4on accuracy tended 
to decrease, underscoring the importance of frequent mul4spectral observa4ons for op4mal ensemble member 
selec4on. Notably, the method demonstrated resilience in scenarios with limited Sen4nel-2 LAI data, with only a 
moderate decline in accuracy even when Sen4nel-2 data were withheld for up to 20 days. 

Furthermore, our analysis iden4fied certain instances where the approach overpredicted LAI values, which could result 
in recommenda4ons for higher-than-necessary input rates. Addi4onal refinement of the ensemble filtering process or 
integra4on of ancillary data sources may further enhance reliability.  

While these findings demonstrate promising alignment between converted and observed LAI values under various data 
availability scenarios, the impact of the uncertainty range of LAI predic4ons on VRA advisor logic remains to be tested. 

 

Table 1. Results for LAI Quantile Values Comparison 

Scenario, where no S2 LAI 
image prior the conversion 
data is available for… 

Quan@le Within range ± 0.5 LAI (%) 
for images end of… 

Within Range ± 1 LAI (%) 
for images end of… 

LAI Pred > LAI Obs (%) for 
images end of… 

March April May March April May March April May 
10 days 0.1 100 51 64 100 85 82 58 61 42 

0.5 96 51 53 98 86 92 52 33 34 
0.9 90 48 39 100 77 69 52 24 21 

15 days 0.1 100 44 59 100 85 81 57 53 40 
0.5 95 50 50 97 80 88 53 30 34 
0.9 87 47 41 100 76 75 53 23 20 

20 days 0.1 100 46 64 100 85 80 55 55 40 
0.5 95 50 56 97 80 80 55 32 36 
0.9 85 47 43 100 73 65 55 26 26 

 

 



 

 

 

Conclusions 

Our results highlight the benefits of integra4ng satellite observa4on-based data like the Biomass Proxy and process-
based crop growth models in producing near-daily and high-resolu4on images of leaf area index (LAI), a key enabler for 
farmers to achieve precision agriculture prac4ces even under cloud covered periods during the season. For farmers, this 
synergy allows the variability in crops within a field—driven by differences in soil, weather, or management—to be 
iden4fied and addressed in near real-4me to react appropriate to this very different management areas.  
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Introduc5on  

Crop models are vital decision-support tools, but their outputs are subject to inherent uncertainty. A significant 
challenge is bridging the gap between their simulated outputs and the physical quan44es measured by remote sensing 
(RS) instrument2. This gap can be addressed by coupling crop models with radia4ve transfer models (RTMs), which 
simulate the interac4on of radia4on with crops. This study developed and tested a comprehensive coupling scheme 
between the DSSAT-CROPGRO crop model and the SCOPE-RTMo RTM for processing tomatoes to inves4gate the 
propaga4on of RS data uncertainty and enhance model predic4ons. 

 

Materials and Methods  

The research involved three stages: model coupling, a synthe4c data assimila4on (DA) experiment, and a real-world DA 
experiment. The coupling scheme linked DSSAT-CROPGRO state variables, such as Leaf Area Index (LAI) and specific leaf 
area, to RTMo parameters like leaf chlorophyll and dry maSer content. A global sensi4vity analysis (GSA) was 
conducted to iden4fy the most influen4al crop model parameters on simulated reflectance at different growth stages. 

In a synthe4c experiment, the coupled model's performance was evaluated using a sensi4vity-based par4cle filter (PF), 
tes4ng different levels of simulated measurement noise. For the real-life experiment, high-resolu4on mul4spectral 
imagery from a UAV was assimilated into the model for processing tomatoes grown under varying irriga4on and 
fer4liza4on levels. A novel approach was implemented to account for the row crop's non-homogeneous surface by 
crea4ng a weighted-average reflectance spectrum from vegeta4on and soil pixels. The PF performance was evaluated 
by comparing simulated LAI and yield against field measurements 

Results and Discussion  

The GSA revealed that parameters influencing crop growth rate had a greater impact on simulated LAI and yield 
variance than phenology-related parameters. In the synthe4c experiment, a decrease in measurement noise led to 
improved parameter convergence and lower uncertainty in model outputs. The real-life experiment demonstrated that 
the DA scheme significantly improved normalized root mean square error (NRMSE) for LAI from 59% to 42% and for 
yield from 64% to 35%. The best performance was achieved by excluding the most water-stressed treatments from the 
DA process, resul4ng in an NRMSE of 34% for LAI and 16% for yield. This highlights the model's limita4ons in 
accurately simula4ng severe water stress. The study also found that dynamically upda4ng key RTM parameters via the 
coupling scheme, such as leaf inclina4on angle distribu4on (LIDF) and dry maSer content (Cdm), was crucial for 
accurate predic4ons 
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Figure 1. Coupling Scheme 

Conclusions  

Coupling a crop model with a radia4ve transfer model and assimila4ng RS data using a sensi4vity-based par4cle filter is 
an effec4ve approach for reducing the uncertainty of crop model predic4ons. Our results show that this framework 
can successfully improve es4ma4ons of LAI and final yield for processing tomatoes. We iden4fied that parameters 
related to crop growth rate contribute most to model uncertainty, making their accurate calibra4on a priority for 
future research. While the framework performed well under low to moderate stress condi4ons, its accuracy in 
simula4ng severe stress needs further improvement. The methodology and findings can guide future research in 
developing robust tools for digital agriculture and agricultural decision-making. 
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Introduc5on 

Climate change is already affec4ng groundwater levels in Germany (Wunsch et al., 2022), and the decline in groundwater 
levels is also becoming increasingly apparent in the state of Brandenburg (Donheiser et al., 2022), with far-reaching 
consequences for the state's water supply. In view of this prospect, the authori4es in Berlin and Brandenburg are working 
hard to record current water consump4on and iden4fy opportuni4es for water conserva4on. While drinking water 
consump4on and water abstrac4on for this supply are well monitored in the region, there is liSle knowledge about 
groundwater use for other purposes, including irriga4on of fields. Remote sensing offers the possibility of iden4fying 
water bodies from the air, including water hidden in the soil's pore system, commonly referred to as soil moisture. The 
iden4fica4on of fields that contain significantly more soil moisture than neighboring fields indicates that a field may have 
been irrigated (Zappa et al., 2021). Based on this theory, Ghazaryan et al. (2025) created the first map of a larger area in 
Central Europe iden4fying individual irrigated fields. 

Materials and Methods 

We use MONICA (Nendel et al. 2011), a mechanis4c, one-dimensional, dynamic simula4on model for processes in the 
soil-plant-atmosphere con4nuum. It aims to simulate the integrated effects of weather, soil and crop management on 
plant growth and yield forma4on, as well as related processes in the soil, including water and nutrient use, changes in 
carbon stocks and greenhouse gas emissions. To this end, MONICA is equipped with a virtual automa4c irriga4on system 
to simulate different irriga4on strategies. We first tested whether MONICA reproduces the response of wheat to soil 
moisture deficits well. To do this, we used 106 combina4ons of loca4on and year from irriga4on and rain exclusion 
experiments across Central Europe. We then used MONICA to simulate wheat produc4on spa4ally explicitly for arable 
land in Brandenburg, applying virtual irriga4on to all fields and crops previously iden4fied as irrigated (Ghazaryan et al. 
2025). Assuming that irriga4on always follows an op4mal rather than a deficit water supply strategy, the applied 
irriga4on amounts were added up. 

Results and Discussion 

Application of the MONICA model to Brandenburg shows that—assuming optimal water supply—a total of 
approximately 17.7 million m³ of water per year has been used on average to irrigate the four most water-intensive 
crops: wheat (3.5 million m³), silage maize (11.8 million m³) sugar beet (1.1 million m³) and potato (1.3 million m³) on 
an average of 12,802 ha (2005–2022). The irrigated areas thus achieved an average yield increase of 53% for wheat, 
106% for silage maize, 17% for sugar beet and 37% for potato, with water use of 2.5 million m³ in 2007 yielding only a 
9% increase in wheat yield, and 5.2 million m³ in 2022 yielding a 119% increase (Fig. 1). The situation was very similar 
for silage maize, where water use of 3.8 million m³ yielded an additional yield of 29%, while in 2018, 42.2 million m³ 
yielded an additional yield of 171%. In that year, the proportion of irrigated silage-maize area rose from an average of 



 

 

 

3.6% to 8.5%. The identification of irrigated potato fields was not satisfying (2,139 ha in 2022 vs. 6,500 ha reported), 
leading to potential underestimation of applied irrigation amounts for potatoes. In contrast, irrigated sugar beet fields 
were overestimated (1,320 ha vs. 600 ha), with respective consequences for the assessment. Irrigated field vegetable 
production is missing so far. 

 
Figure 1. Simulation of dry matter yields of winter wheat in Brandenburg in 2022 on fields with (right) and without (left) additional irrigation. 

 

Table 1. Area under irrigation and irrigation water consumption in Brandenburg, Germany 

 Irrigated area 

 

[ha] 

Irrigated area 

Share  

[%] 

Average 
irriga7on rate 
[mm/season] 

Maximum 
irriga7on rate 

[mm/season] 

Average yield 
boost 

[%] 

Total amount of 
water used 

[million m³] 

Silage maize 5,771 3.6 195 264 +106 11.8 

Winter wheat 3,861 2.6 91 132 +53 3.5 

Sugar beet 1,390 18.0 78 154 +18 1.1 

Potato 1,780 18.5 68 115 +37 1.3 

Conclusions 

The presented methodology provides for the first 4me an observa4on-based assessment of the irriga4on water 
consump4on as an alterna4ve to the meter readings of registered groundwater consumers. Comparing both, the 
simulated water consump4on comes out much higher than the registered one, indica4ng that some of the water 
extrac4on bypasses the official registra4on process and the related compensa4on payment. However, the inability of 
the method to iden4fy deficit irriga4on limits its reliance and the poten4al to replace the registra4on approach.  
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Introduc5on 

Fungal diseases pose a significant threat to global food produc4on, causing considerable yield losses and economic harm 
(Chai et al. 2022). Early and accurate predic4on of the risk of fungal infec4on in crops such as winter wheat can enable 
targeted interven4ons, reducing the dependency on excessive fungicide use, thereby improving both profitability and 
sustainability.  

Materials and Methods 

We propose a hybrid machine learning approach (von Bloh et al. 2024), u4lizing a combina4on of real word infec4on 
data and simulated infec4on risk data provided by ISIP, to train a long short-term memory (LSTM) (Hochreiter and 
Schmidhuber 1997) model. This will enable the predic4on of future fungi infec4on risk based on past and future weather 
condi4ons. To achieve this hybrid, approach the model is pretrained with a large amount of synthe4c data and then 
finetuned for the specific task on real world data. The predic4ons consider Septoria Tri4ci, Brown Rust, Yellow Rust, 
Powdery Mildew and DTR on winter wheat.  

Results and Discussion 

Figure 1 shows an exemplary fungi incidence predic4on for a single loca4on. Performance metrics for all considered 
fungus types and simulated years can be found in Table 1.  

 

 

Figure 1. Predicted and measured incidence for Septoria tritici 

Building on ISIP models enables the base model to capture fundamental infec4on paSerns, while fine-tuning yields 
con4nuous forecasts for threshold-based assessments, suppor4ng more accurate long-term models that can be easily 
extended with addi4onal data sources. Since the simula4on was based on infec4on risk, whereas the real word dataset 
contained measured incidence, aligning one set of predic4on with the other was inherently imperfect, which is expected 
to nega4vely impact the accuracy.  

 



 

 

 

Table 1. F1-Scores for the predicted incidence on the analyzed fungus types 

 Septoria Brown Rust Yellow Rust Mildew DTR  

LSTM 29.24 31.05 26.77 21.04 16.62  

 

 

Despite the imperfect alignment, pretraining the model using simulated data shows to posi4vely impact overall 
predic4ve performance. 

Conclusions 

The performance metrics show that the proposed methodology achieves significant predic4ve accuracy on unseen data. 
This demonstrates that the use of simulated data can mi4gate the limita4ons caused by the lack of real-world training 
data. Addi4onally, we establish that a model pretrained on risk classifica4on can be fine-tuned to produce con4nuous 
outputs. 
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Introduc5on  

Understanding plant–environment interac4ons is a major challenge in ecology and is essen4al for predic4ng the impacts 
of agronomic prac4ces and climate change on perennial crop produc4on. While numerous models have been developed 
for annual crops and major perennials, herbaceous perennials remain largely unmodeled, and the mechanisms 
regula4ng growth and carbohydrate storage in these crops are poorly characterized in agronomic context (Samraoui, 
2025). The study focuses on Asparagus officinalis, a perennial crop harvested for its young shoots, characterized by high 
variability in yield and for which growth modeling remains a challenge (Drost 2023, Graefe 2010). In collabora4on with 
a French producers’ organiza4on, this study addresses the crop’s specific agronomic challenges in the context of this 
local sevng, where scien4fic knowledge on the species remains limited. 

Materials and Methods  

We developed a parsimonious mechanis4c crop model based on fundamental biological principles, (Thornley, 1990) 
simula4ng the trade-off between growth and storage in herbaceous perennial plants. Ecophysiological assump4ons were 
developed and translated into mathema4cal form using exis4ng knowledge of the species and insights from the scien4fic 
literature. The model is teleonomic, assuming that plants adjust their shoot-to-reserve carbohydrate ra4o in response 
to environmental condi4ons and management prac4ces, minimizing it under stress and op4mizing it under favourable 
condi4ons. Model parameters are ini4ally calibrated and tested using published literature. Par4cipatory protocols are 
implemented across mul4ple sites in France in order to get first original data for model valida4on, including daily harvest 
measurements on different plots and monitoring of soil and air temperatures under various mulching prac4ces. 

Results and Discussion  

Model simula4ons are consistent with published literature data and with the first original data collected. The model is 
intended to predict plant responses to different cul4va4on strategies, climate scenarios, and poten4al increases in plant–
pest interac4ons associated with reduced pes4cide use.  

 



 

 

 

  
Figure (a) presents a simplified representa:on of the conceptual model. 

  
Figure (b) shows a preliminary comparison between observa:ons from a producer (daily yield per hectare in 2025) and simula:ons from the model 
based on temperatures measured on the plot, with analysis s:ll ongoing and further valida:on required. 

Conclusion 

By capturing the dynamic balance between growth and storage, our model aims to provide insights into the 
ecophysiology and resilience of Asparagus officinalis under variable environmental condi4ons and agricultural prac4ces.  
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Introduc5on 

Ireland’s temperate oceanic climate, with mild summers and winters, supports a long growing season and a grass-
based agriculture where more than 80% of the agricultural area is under grass or conserved forage. Managing grass 
and grazing animals requires a good an4cipa4on of the impact of weather variability. PastureBase Ireland (PBI, 
Hanrahan et al., 2017) is a decision-support tool developed by Teagasc to help farmers beSer manage their grass. 
However, all the tools in PBI represent the current or past situa4on but do not provide informa4on about the future. 
To address this gap, a na4onal grass-growth predic4on program began in 2019 to produce localised grass growth 
forecasts for farmers. Since 2020, the predic4ons have been shown each Sunday on na4onal television, and since 2025 
they have been available directly within PBI. 

Materials and Methods  

The project started in 2018 a{er a challenging grass-growing year with a cold spring and a summer drought, 
highligh4ng the need to know when and if grass growth will recover. Predic4ons ini4ally covered 30 farms and later 
expanded to 84 predominantly commercial dairy farms distributed across Ireland. The model used is the Moorepark-St 
Giles Grass Growth model (MoSt GG; Ruelle et al., 2018; Bonnard et al., 2025), a mechanis4c model that accounts for 
weather, soil type, and management to predict primarily grass growth, grass nitrogen content, water and all N fluxes 
on a daily 4me step. Meteorological data are provided daily by Met Éireann (modelled data, historical and forecasted) 
and, where available, on-farm weather sta4ons. Management inputs originate from PBI and include paddock area, 
grazing and cuvng dates, and fer4liser applica4ons (amount and 4ming). Each paddock is represented individually. 
Paddock-level predic4ons are aggregated to farm means for individualised 7-day outlooks, and then to county means 
for regional situa4onal awareness. Figure 1A shows an example of farm-level outputs and the loca4on of the different 
par4cipa4ng farms 

Results and Discussion  

Weekly maps are sent directly to par4cipa4ng farmers via WhatsApp (Figure 1A) and are also available within PBI. 
Addi4onal dissemina4on formats have been created to improve the usefulness of the predic4ons. A current growth map 
is generated weekly, showing na4onal grass growth, variability between and within regions, and comparisons with 
previous years (Figure 1C). A simplified county-level forecast is also produced (Figure 1D). These simplified maps are 
available on the PBI website and disseminated to government agencies, agri-business, and agricultural media (Farmer’s 
Journal, Grass10 newsleSer). Since August 2020, county-level predic4ons have been broadcast every Sunday on RTÉ One 
during the “Weekly Meteorological Farming Forecast” (Figure 1B). 

 



 

 

 

Farmer feedback has been very posi4ve. The predic4ons help them iden4fy surpluses or deficits of grass earlier, 
suppor4ng 4mely decisions such as whether extra feed is needed. The predic4ons are most valuable when they differ 
from farmer expecta4ons, as this can indicate rapid weather changes, the onset of drought, or nitrogen deficiencies. 

The main limita4on is uncertainty around local rainfall amounts, which strongly influence grass growth. To address this, 
the program has begun installing weather sta4ons on par4cipa4ng farms to improve accuracy, especially in 4me of water 
deficit an increasingly important step in the context of climate change. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Grass-growth forecas@ng and dissemina@on in Ireland: (A) Individual farm-level predic@ons (kg DM ha⁻¹ day⁻¹); (B) RTÉ One ‘Weekly 
Meteorological Farming Forecast’ featuring county-level outputs; (C) Current growth map from PastureBase Ireland; (D) County-level forecast for the 
following week. 
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Introduc5on 

EU Regula4on requires environmental risk assessments (ERA) for non-target organisms exposed to ac4ve substances in 
plant protec4on products. To advance the ERA of pes4cides effec4vely, it is important to have accurate predic4on of 
crop phenology spa4ally across the EU. Therefore, the present study aims to enhance pes4cide risk assessment for non-
target organisms by precisely mapping crop development stages (BBCH1) across the EU by developing predic4ve models 
of crop sowing dates as well as calibrated models of crop phenology. 

Materials and Methods 

We did an extensive data collec4on and cura4on from public sources like C2D2 (Hughes et al., 2023), PEP725 (Templ et 
al., 2018), and TEMPO (Maury et al., 2023), alongside literature, crea4ng a harmonized database of over 1.2 million 
phenological observa4ons. Comparisons revealed C2D2's broad spa4al coverage across Europe, while PEP725 
concentrated in Central Europe and TEMPO in France. C2D2 and TEMPO offered observa4ons across various growth 
stages, unlike PEP725 which focused on sowing, emergence, and harvest.  A model for spa4ally predic4ng sowing 
dates was developed using a temperature-driven rule, supplemented by a median rule for regions where management 
prac4ces (like irriga4on) heavily influence plan4ng, as seen with maize in Southern Europe. The WOFOST cropping 
system model's phenological sub-model was used to simulate phenology. It predicts crop development through a 
dimensionless development stage(DVS) variable which is 0 at crop emergence and reaches 1.0 at anthesis and 2.0 at 
maturity. The model accounts for temperature as well as photoperiod and vernaliza4on for winter crops. The 
temperature sum requirements to anthesis (TSUM1) and maturity (TSUM2) were calibrated using observed sowing, 
flowering and maturity dates from the datasets men4oned above. Observa4ons were pooled by defining 
agroecological zones with similar agroclima4c condi4ons and all observa4ons in an agroecological zones where used 
jointly to es4mate the TSUM1 and TSUM2 parameters. Next, the intermediate BBCH stages were connected to the DVS 
scale as defined by WOFOST. Finally, the calibrated model was used to predict development stages based on the 
predicted sowing dates over the en4re European 10x10 km grid in order to have wall-to-wall predic4ons of all BBCH 
development stages.  

Results and Discussion 

The phenological model of WOFOST was calibrated with good results for 8 crops including spring barley, potato, 
sunflower, maize, winter-wheat, winter-rye, winter-rapeseed and winter-barley. In all 8 cases WOFOST was successful 
in predic4ng crop phenology a{er calibra4on. Figure 1 shows the results for spring barley for all agroecological zones 
across Europe.  Moreover, it was demonstrated that intermediate crop development stages could be successfully 
linked to the WOFOST DVS scale for development. Figure 2 demonstrates the rela4onship between observed BBCH 

 
1 https://en.wikipedia.org/wiki/BBCH-scale 



 

 

 

stages and the WOFOST DVS scale. As expected, BBCH stages do not correspond to single points on the WOFOST DVS 
scalebut show a certain range and are partly overlapping as well.  

 

  
Figure 1. Calibrated and predicted days to anthesis (le{) and days to maturity (right) for spring barley. 

 

Figure 2 Rela4onship between WOFOST DVS values (x axis) and BBCH stages (y axis) for spring barley. 

Conclusions 

In conclusion, the project successfully established a comprehensive phenology database and robust modeling 
framework. This provides valuable, precise spa4o-temporal informa4on on crop development, significantly improving 
environmental risk assessment for pes4cides in the EU regulatory context. In the near future, the developed spa4al 
model for predic4ng sowing dates as well as the calibrated parameters will be made available as an open data product 
which facilitates applica4on of the WOFOST model as well. 
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Introduc5on 

Process-based crop simula4on models, such as the Decision Support System for Agrotechnology Transfer (DSSAT; 
www.DSSAT.net), have become integral to agricultural systems research and as decision-making tools (Hoogenboom et 
al., 2019). Despite their wide poten4al, the large-scale implementa4on of crop models within the research community 
as well as among broader agricultural communi4es is constrained by challenges in model parameteriza4on and model 
input setup. Accurate simula4ons require detailed site-specific informa4on, including plan4ng dates, plan4ng density, 
fer4liza4on strategies, irriga4on regimes and cul4var-specific informa4on. Obtaining these inputs is o{en 4me-
consuming and technically challenging as such data are fragmented across heterogeneous sources. Moreover, even 
a{er assembling all the required model inputs, an addi4onal challenge lies in encoding them into the correct formats 
and structures required by crop models. A minor devia4on in the format and structure can break the model run. Thus, 
parameteriza4on of crop model inputs and file setup have become the primary limita4on to the wider adop4on of 
crop simula4on modeling for both research purposes and in the field decision-making purposes. The objec4ve of this 
study is to design and evaluate a workflow that integrates genera4ve ar4ficial intelligence (GenAI) with a process-
based crop model to automate the parameteriza4on and crea4on of required crop model inputs and setup files 
thereby enabling scalable model applica4ons.  

Materials and Methods  

We have proposed an approach that leverages GenAI within the DSSAT-Pythia framework (Fig. 1) (Joshi et al., 2025). 
DSSAT-Pythia provides a scalable framework for running DSSAT crop models across mul4ple spa4al-temporal scales. 
GenAI offers a powerful solu4on by genera4ng, inferring, assembling, and harmonizing the required environmental, 
genotype and crop-management specific parameters, significantly reducing the dependence on manual data collec4on 
and prepara4on. With contextual engineering, we have tailored GenAI to provide crop model parameter sets for 
specific loca4ons and growing seasons. This capability has enabled efficient and automated parameteriza4on 
considerably reducing the technical threshold required to configure and execute the model simula4ons. 

Results and Discussion  

In this study, we demonstrate the workflow through a case study of historical and near-real-4me maize simula4ons for 
the Trans Nzoia region of Kenya. Our results highlight both the opportuni4es and challenges of integra4ng GenAI with 
DSSAT-Pythia for spa4al model applica4ons and up-scaling model usage beyond the experts. Since GenAI can 
hallucinate and make mistakes, we also present the necessity of a human-in-the-loop approach where careful review 
and evalua4on of model inputs are integral to the workflow. We propose procedures for quality-checking of model 
parameters to ensure that input data, file setup and simula4on outputs are precise.  

http://www.dssat.net/


 

 

 

Conclusions  

The workflow presented in this study focuses on the maize simula4ons in Kenya. However, the proposed framework is 
broadly applicable and scalable to other crops, regions, and other modeling scenarios. This study shows promising 
results in machine-human teaming with GenAI for upscaling crop simula4on model applica4ons. 

 

Figure 1. Workflow demonstrating a scalable framework to integrate Generative Artificial Intelligence (GenAI) in parameterizing, setting up files and 
execution of the DSSAT-Pythia crop simulation model. 
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Introduc5on  

Contextualiza4on of generic scien4fic knowledge into context-specific farmer knowledge is a necessary but a challenging 
step in farmers’ innova4on process. While working together, farmers and researchers may have a different 
understanding and representa4on of specific agronomical ques4ons. Crop models can act as an interface during 
par4cipatory projects to help communica4ng on complex problems by providing contextualized examples. Given the 
diversity of prac4ces and indicators relevant to farmers, we argue for the development of a carefully co-designed basket 
of op4ons. This basket would integrate prac4ces selected by farmers, modelled within specific contexts described by 
them. Effects of these prac4ces will be translated into indicators they propose and use, thereby allowing each farmer to 
iden4fy op4ons suited to their own situa4on. 

This work proposes a framework to use crop models to assist decision making and innova4on by simula4ng a large 
number of scenarios based on farmers’ descrip4ons of their environment, prac4ces own indicators.  

Materials and Methods  

Drawing inspira4on from the concept of a boundary object to structure the exchange of informa4on and knowledge 
between farmers’ and researchers’ worlds, we developed a framework composed of 6 Ac4ons (A1 to A6) divided in three 
phases (Figure 1).  This framework facilitates the use of crop models in par4cipatory research by simula4ng change in 
prac4ces within “baskets of contextualized op4ons”, thus allowing to cover a diversity of prac4ces and environments to 
approximate farmers’ contexts. 

To test the framework, three workshops and individual discussions were proposed throughout 2022 to a group of 15 
farmers (six women and nine men of all ages) from Arbollé, region Nord of Burkina Faso (12° 50ʹ 40ʺ N, 2° 02ʹ 18ʺ W). In 
this area of Sudano-Sahelian climate, rainfed cropping systems include sorghum, pearl millet, cowpea and groundnut 
with the primary purpose of producing staple food with important challenges regarding nutrient management. 

The iden4fica4on of the agronomical ques4on, the characteriza4on of the system under considera4on and the 
management op4ons to consider provided the basis for adequate crop model selec4on by researchers (in this case DSSAT 
V4.7). Based on the descrip4on of the management op4ons and the environments made by farmers, the researchers  



 

 

 

then, used the models to simulate the Management × Environment (MxE) combina4ons required to assess the poten4al 
of farmers’ innnova4on. Communica4on tools were generated to present and discuss the main results of the modelling 
work with farmers. 

Results and Discussion 

During the tes4ng of the framework on soil fer4lity management for sorghum produc4on in Arbollé, both farmers and 
researchers shared knowledge on the drivers of cropping system performance. Despite some necessary approxima4ons, 
farmers’ descrip4ons of their environment and management prac4ces, complemented by literature, were sufficient to 
parametrize the model. By matching the main farmer-proposed indicators to the main model outputs, we were able to 
cons4tute a basket of op4on with quan4fied examples of crop performance under contras4ng scenarios. Discussions 
with farmers started by finding the MxE combina4on that best matched their own field experience and served as 
baseline. Then, prac4ces changes were explored and discussed taking the baseline as reference to explain the influence 
of the change made on various indicators. By confron4ng the baseline to their own knowledge, farmers could cri4cally 
receive and discuss the alterna4ve prac4ces and their impact.  

 
Figure 1. Schematic representation of the framework to use crop models in participatory approaches with farmers. The framework is composed of 6 
Actions (A1 to A6, grey circles) divided in three phases. Phase I - Reaching out to farmers’ world: A1 – Project initialization, A2 – Identification of the 
agronomical question, A3 – Characterization of the environments, the management options (A3a) and the indicators to describe the system under 

consideration (A3b); Phase II - Within researchers’ world: A4 – Crop model parametrization, A5 – Translation of model outputs into farmer-
proposed indicators; Phase III - Back to the farmers’ world: A6 – Exploration of contextualized management options with farmers. The problem to 
be explored is represented in its shared ill-structured form at the intersection of farmers’ and researchers’ worlds, while it is more specific within 

each world. T1, is a first communication tool gathering contextualized management options whose effects are quantified through a crop model and 
described through farmer-proposed indicators. T2, the ‘summary handout’ is a second communication tool that substantiates the management 

options considered by farmers and is offered to them.  



 

 

 

Conclusions  

The framework formalized in this work serves as a basis for a powerful process for researchers to beSer communicate 
and share knowledge on key concepts with farmers during innova4on processes, while using crop models. It raised 
ques4ons on how to appropriately use crop model outputs to produce proxies to farmer-proposed indicators. Although 
tested with soil fer4lity management ques4ons, this method could help in addressing a wider variety of issues or in 
combina4on with other ac4vi4es, such as agronomic experiments. 
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Introduc5on 

Agricultural systems in Sub-Saharan Africa (SSA) face persistent threats from climate variability, soil degrada4on, and 
resource constraints, with profound implica4ons for food security and rural livelihoods. Crop and farm system models 
have been widely applied to explore climate change impacts and adapta4on strategies, as well as op4ons for nutrient 
management (Webber et al., 2014). Yet their actual contribu4ons to posi4ve change remain insufficiently assessed 
(Steger et al., 2021). This study systema4cally reviews how crop and farm system models have been applied in SSA, with 
par4cular aSen4on to the role of stakeholder engagement and the transla4on of modelling outcomes into prac4ce. 

Materials and Methods 

We conducted a systema4c literature review in Web of Science and Scopus, using the keywords “system model,” 
“posi4ve change,” and “Sub-Saharan Africa” with their synonyms. A{er screening and expert valida4on, 71 studies were 
retained and coded for modelling approach, problem type, stakeholder par4cipa4on and diversity, and analysing study 
intended and achieved outcomes. 

Results and discussion  

Across the 71 studies, climate change adapta4on emerged as the dominant problem type, followed by nutrient and 
water management, with rela4vely fewer addressing resource conserva4on. Crop system models (n=42) predominated, 
typically applied for predic4on and forecas4ng, relying mainly on biophysical data. Farm system models were fewer but 
more o{en used for decision support, integra4ng socio-economic as well as biophysical informa4on. 

Figure 1 shows a gap between the intended and achieved purposes of modelling studies. Predic4on and forecas4ng 
aligned most closely with outcomes, while decision support and social learning were rarely realized. Importantly, these 
gaps varied with the mode of stakeholder par4cipa4on: consulta4on-focused studies produced technically sound but 
underu4lized outputs, collabora4ve approaches improved contextual relevance, and co-developed models fostered trust 
and uptake by embedding local knowledge (Sempore et al., 2016) into design and valida4on. This demonstrates that the 
degree of stakeholder engagement strongly influences whether models advance beyond scien4fic understanding toward 
ac4onable decision support. 
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Figure 1. Percentage of papers with a primary or secondary purpose and outcomes for each category of system understanding, predic@ng & 
forecas@ng, decision support and social learning 

Conclusions 

The impact of agricultural modelling in SSA depends less on technical capacity than on par4cipatory design. Crop models 
are vital for forecas4ng, while farm system models beSer support decision-making when inclusively developed. To drive 
resilient and equitable transforma4on, models must move beyond technical forecas4ng and be co-produced as 
par4cipatory, context-sensi4ve tools that link science with local reali4es. 
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Introduc5on 

In Italy, apiculture is an important component of na4onal agriculture. Monofloral honeys cons4tute a dis4nc4ve and 
valuable asset, although their yields exhibit high interannual variability driven by weather fluctua4ons that affect both 
the phenology of melliferous plants and bee foraging ac4vity. Consequently, 4mely informa4on on flowering onset and 
weather condi4ons limi4ng bee ac4vity is essen4al to op4mize apiary management, favor nomadic beekeeping and 
maximize honey produc4on. Although phenological models are commonly applied to predict the flowering of woody 
species, their use for herbaceous plants remains limited, and integra4on with short-term weather forecasts for 
predic4ng melliferous flora phenology is rare (Chuine et al. 2013; Alilla et al. 2022). The objec4ve of this study is thus to 
apply a set of phenological models on short-term weather forecasts for improving beekeeping management and honey 
produc4on during the season. In detail, we calibrated and validated four temperature-driven phenological models (GDD, 
UNIFORC, UNICHILL, BRIN) for both herbaceous (sulla, sainfoin, clover) and woody species (black locust, chestnut, 
linden) in Tuscany, Italy. The best-performing models were combined with 16-day weather forecasts to predict species-
specific flowering onset and foraging windows, incorpora4ng temperature, rainfall, and wind thresholds that constrain 
bee ac4vity and poten4al honey produc4on. 

Materials and Methods 

This study was conducted in Tuscany (central Italy), focusing on three herbaceous forage species—sulla (Hedysarum 
coronarium L., SU), sainfoin (Onobrychis viciifolia L., SA), and clover (Trifolium spp., CL)—and three woody species—
black locust (Robinia pseudoacacia L., BL), chestnut (Castanea sa`va Mill., CH), and linden (Tilia sp., LI)—important for 
monofloral honey produc4on. Phenological data were obtained from expert observa4ons, the Italian Phenological 
Network (IPHEN), and online databases (PEP, GBIF, iNaturalist, and ARPAT), defining flowering onset as 10% of flowers 
open (BBCH 61) for SU, SA, CL, BL, and LI, and full flowering (BBCH 65) for CH. The dataset included 239 records from 
103 sites (2000–2024), with an independent 2025 dataset (93 records) used for model valida4on. Meteorological data 
(air maximum and minimum temperature, precipita4on, wind speed) were collected from the nearest SIR (Servizio 
Idrologico Regionale) sta4ons and complemented with 16-day forecasts from OpenWeatherMap at 500 m resolu4on. 

Four phenological models (GDD, UNIFORC-forcing; UNICHILL, BRIN-chilling-forcing) were applied to es4mate flowering 
onset, with all models used for woody species and only forcing models for herbaceous species. Models were calibrated 
and validated using Phenological Modeling Playorm (PMP v5.5; Chuine et al., 2013) on 5 calibra4on and 5 valida4on 
datasets obtained by randomly splivng observed flowering data (60% calibra4on, 40% valida4on). A mul4-criteria 



 

 

 

decision-making framework, integra4ng Compromise Programming with the Entropy Weights Method, was employed 
to iden4fy the op4mal input set and, within it, the most accurate model based on sta4s4cal metrics (r, RMSE, AIC) 
computed during calibra4on and valida4on. 

The selected models were then applied to 
the 2025 dataset using 16-day forecasts to 
predict flowering onset at the relevant 
meteorological sta4ons, and the number of 
suitable foraging days was es4mated for 
each species using thresholds for 

temperature (20–30 °C), rainfall (<4 mm), and wind speed (<2.8 m s⁻¹) within the predicted flowering window (Czekońska 
et al. 2023; Vincze et al. 2024). 

Results and Discussion 

Table 1. Average parameter values of base temperature threshold (Tb; °C), starting day (t0, DOY), chilling requirement (Chillreq; CU), forcing requirement 
(Forcreq; FU for UNIFORC and °C d-1 for GDD), and empirical parameters (a-
e) for each combination of herbaceous (SU, SA, and CL) and woody species 
(BL, CH, and LI), best set and best model selected. 

Across calibra4on (Tab. 1) and valida4on (Fig. 1), UNIFORC 
provided the most accurate predic4ons for SU, SA and LI (𝑟̅ 
= 0.92, 𝑅𝑀𝑆𝐸'''''''' = 5.18 days, 𝐴𝐼𝐶''''' = 61.19), followed by 
UNICHILL for BL and CH (𝑟̅ = 0.63, 𝑅𝑀𝑆𝐸'''''''' = 4.54 days, 𝐴𝐼𝐶''''' 
= 153.50), and GDD for CL (𝑟̅ = 0.86, 𝑅𝑀𝑆𝐸'''''''' = 5.19 days, 𝐴𝐼𝐶''''' 
= 169.35). These results confirm that forcing-based models 
effec4vely capture flowering dynamics in Mediterranean 
herbaceous species, where dormancy is minimal during 
winter, while chilling-forcing models remain useful for 
some woody species, even if the role of dormancy s4ll 
should well evaluate. For this reason, although our results 
align with previous studies (Alilla et al. 2022; Kim and Jung 
2022), comprehensive datasets combining field 
observa4ons with experimental tests on bud exposure to 
varying cold periods are needed in order to assess the actual contribu4on of dormancy in melliferous species. Integra4ng 
phenological models with 16-day weather forecasts allowed predic4on of flowering onset 10–14 days in advance and 
reliable es4ma4on of op4mal foraging days. This highlighted that early-flowering species at low eleva4ons are more 
sensi4ve to cold, rainfall limits bee ac4vity across all al4tudes, and wind increasingly constrains foraging at higher 
eleva4ons, as also reported by Messeri et al (2024) and Zola (2024). 

Conclusions 

This study demonstrates that integra4ng phenological models with short-term weather forecasts enables early 
predic4on of flowering onset, providing ac4onable guidance for beekeeping and forage management. Future decision-
support systems could combine hourly environmental data with field observa4ons provided by beekeepers to refine 
models in real-4me and op4mize honey and crop produc4on under Mediterranean climate variability. 

Acronym Set Model Tb t0 Chillreq Forcreq a b c d e 
SU 5 UNIFORC - 2.98 55.72 - - - - -0.66 11.26 
SA 1 UNIFORC - 79.01 35.32 - - - - -0.86 10.10 
CL 1 GDD 4.37 93.10 523.95 - - - - - - 
BL 2 UNICHILL - 244* 193.49 32.54 0.15 14.37 27.40 -0.86 11.22 
CH 1 UNICHILL - 244* 261.22 20.73 0.24 10.45 28.70 -0.15 18.64 
LI 4 UNIFORC - 96.42 47.87 - - - - -0.80 13.60 

*Referred to the year preceding the year in which flowering occurs 



 

 

 

                                                                                                                            Figure 1. Comparison between observed and simulated 
flowering dates (DOY) across herbaceous (SU, SA, and CL) and woody species (BL, CH, and LI) using the best-selected set and model. The dashed line 

represents the 1:1 reference line.  
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Introduc5on  

Wheat yield variability is projected to increase under climate change, driven by droughts, heat waves, and compound 
stresses (Liu et al., 2021). Reliable in-season yield forecasts are therefore essen4al for farmers, policymakers, and 
humanitarian organiza4ons to an4cipate supply shocks, stabilize markets, and plan effec4ve responses (Funk et al., 
2019). The challenges of in-season forecasts are the unknown growth condi4ons for the remainder of the crop season 
from the forecast date to harvest. These condi4ons can be provided from weather or climate forecast models. While the 
applica4on of forecasted weather condi4ons within process-based crop models has been widely studied, the systema4c 
use of forecasted weather data in data-driven yield forecas4ng remains underdeveloped. The overarching aim of this 
study is to develop and evaluate wheat yield forecas4ng models that integrate forecasted weather data in order to 
improve their 4meliness, accuracy, and prac4cal u4lity. Building on this mo4va4on, the study inves4gates four central 
research ques4ons. First, it examines whether mul4-model ensembles provide an advantage over climatology or single-
model forecasts in predic4ng wheat yields. Second, it explores how the composi4on of such ensembles, specifically, the 
number and selec4on of models, influences forecast performance. Third, it evaluates the rela4ve importance of 
forecasted weather data compared to other predictors, such as soil proper4es or vegeta4on indices, in machine learning-
based crop yield models. Finally, it considers whether shorter lead 4mes can improve the predic4ve skill and usefulness 
of yield forecasts for agricultural decision-making.  

Materials and Methods  

This study develops and evaluates data-driven models that link meteorological and ancillary input data to wheat yield 
outcomes across major produc4on systems in Brazil, Argen4na, the United States, and the European Union. The core 
focus lies on the use of forecasted weather data, derived from seasonal and subseasonal climate predic4on systems, 
which are bias-corrected and aggregated to match observed or reanalysis weather records. These forecasts are 
combined with vegeta4on indices (NDVI, fAPAR) and soil proper4es to forecast end-of-season yield sta4s4cs on (sub-
)na4onal level. Three modeling approaches are applied. Ridge regression offers an interpretable linear benchmark that 
relates aggregated weather anomalies to yield variability. Long Short-Term Memory (LSTM) networks exploit sequen4al 
dependencies, capturing how evolving weather and vegeta4on dynamics across the growing season affect yield 
forma4on. Gaussian Process Regression (GPR) provides a flexible non-parametric alterna4ve, well suited for nonlinear 
rela4onships and heterogeneous regional data. Model skill is assessed using a range of complementary metrics, 
including RMSE, MAE, R2, and ROC scores. 

Results and Discussion 

Our study shows that wheat yield forecasts with mul4-model ensembles (MMEs) provide more consistent performance 
than single-model forecasts or climatology benchmarks. MMEs of three models (ECMWF, Météo-France, and NASA) 
delivered the best performance in Argen4na, where na4onal yields could be forecast skillfully one month before harvest. 



 

 

 

In Brazil, MMEs reduced errors rela4ve to climatology and showed less variability across months, providing a prac4cal 
tool for planning in a country heavily reliant on wheat imports. In the U.S. Great Plains, machine learning models that 
incorporated forecasted seasonal climate data (especially in April–May) improved predic4ve skill by up to 10% during 
cri4cal stages such as boo4ng and heading, demonstra4ng that forecasts, even with horizons as short as two weeks, can 
meaningfully support decision-making. A key highlight of this work is the evalua4on of the added value of four-week 
weather forecasts into the official EU MARS Crop Yield Forecas4ng System through the new MARS+Forecast framework. 
When assuming a perfect four-week weather forecast based on reanalysis data (MARS+Perfect), MARS forecasts would 
theore4cally be improved in 16 countries, covering 60% of EU wheat area and 55% of wheat produc4on. Figure 1 
illustrates these country-level performance differences, highligh4ng where MARS+Perfect provided the greatest added 
value. Taken together, the results highlight that small MMEs (around three models) and the targeted use of subseasonal 
forecasts around crucial development stages can enhance the 4meliness and accuracy of wheat yield forecas4ng across 
diverse agro-clima4c regions. Improvements in weather forecast skill, are likely to translate directly into agricultural 
value, but only if yield models are designed to account for the specific proper4es of forecast data. For instance, forecast 
skill o{en declines at higher spa4al resolu4on, so aligning forecast resolu4on with crop modeling scales is cri4cal to 
avoid spurious errors. Likewise, building yield models that explicitly consider the strengths and weaknesses of weather 
forecasts (e.g. biases, ensemble spread, and temporal aggrega4on) can improve robustness. The results also underscore 
the value of short-term forecasts, especially during sensi4ve growth stages, where even two-week lead 4mes can aid 
opera4onal decision-making. Looking ahead, advances in AI-based forecas4ng systems provide promising opportuni4es 
to strengthen the use of forecasted weather data within data-driven crop yield models. 

 

 
Figure 1. Performance comparison of MARS and MARS+Perfect across EU countries. The MARS Crop Yield Forecas@ng System is the opera@onal EU 
framework that combines process-based crop model outputs, satellite vegeta@on indicators, and gridded meteorological data within an analyst-guided 
sta@s@cal approach. In May, during a cri@cal stage of wheat development, MARS issues its first forecast based on observed data. Our extension, 
MARS+Perfect, incorporates theore@cal always-correct four-week weather outlooks of temperature and precipita@on a�er the May publica@on date, 
providing a quan@ta@ve way to assess the poten@al added value of subseasonal weather informa@on. The figure shows the distribu@on of annual 
performance differences between MARS+Perfect and MARS at the country level. Each boxplot depicts the range and median of yearly error differences, 
with a ver@cal line at zero indica@ng equal performance. Purple boxplots denote countries where MARS+Perfect outperformed MARS in more than 
half of the years (median < 0), while orange boxplots denote the opposite (median ≥ 0). 
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Introduc5on  

Decision Support Systems (DSS) in agriculture are digital tools that can integrate different technologies to assist farmers, 
agricultural professionals, and decision-makers in taking informed decisions. These systems use data, models, and 
algorithms to provide insights, predic4ons, and recommenda4ons that can op4mize agricultural prac4ces. The goal is to 
improve resource management, sustainability, and profitability in farming opera4ons by promo4ng more sustainable, 
adap4ve, and resilient cropping systems. Although several alterna4ves are available for agricultural stakeholders, 
adop4on is s4ll low, with one of the main obstacles being convincing farmers and technicians that a DSS can address 
their specific needs, even if it has been developed in a different agronomical context.  

Materials and Methods  

Horta’s DSSs are based on key aspects that enable them to face the challenges of convincing farmers of the trustability 
and robustness of the DSSs, especially to enter into new contexts (countries/environments/agricultural prac4ces) or to 
respond to climate change. These key aspects are: i) deep agronomic and biological knowledge, based on con4nuous 
experimental trials, controlled environmental experiments, and agronomical exper4se ii) mechanis4c process-based 
modelling framework, iii) use of historical and real-4me data from different sources (proximal/remote, 
automa4c/manual, territorial/site-specific) related to weather, soil, plant and crop opera4ons and vi) 
flexibility/customiza4on of stakeholders needs.  

All key aspects of crop management are considered by integra4ng models and func4onali4es related to: crop growth, 
bio4c stresses (diseases, pests and weeds control), abio4c stresses (irriga4on, temperature and physiopathologies), 
nutri4on, soil and carbon management, produc4on (yield and quality), and sustainability. 

Results and Discussion  

Thanks to these features, Horta’s DSS are ac4vely used by thousands of farmers and advisors, as well as coopera4ves 
and agri-food industries on 16 crops (arable, fruit and vegetables) in 12 Countries. Benefits of using the DSSs for decision 
making in crop management were measured in different pilot projects and some prac4cal examples are described: 

1. water management is a very important aspect for tomato agri-food industry; by using Horta’s Tomato DSS, that 
includes a water balance model, 20% reduction in water consumption was demonstrated. Other aspects were 
improved (optimization of disease control and fuel use) that converge in an average reduction of carbon 
emissions by 25% (CO2eq t/t) (on farm field trials 2016-2024). 

2. for durum wheat management a fundamental aspect is the correct distribution of nitrogen; Horta’s Wheat DSS 
includes a nutrition balance model that, integrated with satellite remote sensing of vegetation indexes, 
optimize precision applications of nitrogen, both amount and spatial distribution (variable rate applications). 
Within the project ADP4durum (funded by Apulia Region, Italy) a saving of 40% of N kg/ha was achieved. 
Moreover, long term on-farm trials (2012-2022) carried out in collaboration with Barilla Industry, 
demonstrated improvements in crop management both on production and quality (increase of 4,5% in yield 
and of 3,2% in protein content) and on sustainability (reduction of carbon emissions by 12% CO2eq t/t). 



 

 

 

3. in viticulture, diseases and pests are the major factor that may affect yield and quality, and a high number of 
plant protection products are applied during the season. In addition to grape production, grape growers play a 
fundamental role in safeguarding the agricultural land of large hilly areas which are subject to erosion and loss 
of organic matter. Within the EU funded project PLOUTOS, 15 grape growers adopted Horta’s Grape DSS and 
inter-row grassing and were able to generate and certify around 10 Carbon Credits/ha/year. 

4. within the EU LIFE AGRESTIC project and follow-ups, Efficient Cropping Systems (improved crop rotations with 
cover crops, reduced tillage and use of Horta’s DSS) were tested over several cropping seasons (2020-2025). 
Decrease in fuel consumption, use of nitrogen fertilizers, number of phytosanitary treatments, number of 
irrigation and volume of water, as well as sowing densities, was demonstrated and resulted in an overall 
decrease of carbon footprint of 37%. 

Conclusions  

Integra4on of different technologies and mul4disciplinary knowledge is key for the development of successful digital 
farming tools. The real-world examples described above demonstrate how the combina4on of process-based models, 
agronomic knowledge and technology within Horta’s DSS have shaped and supported decisions by agricultural 
stakeholders. The results obtained on farm trials have provided measurable benefits in all sustainability pillars, 
although the best metric for the evalua4on of such tools is the constant increasing in adop4on and high renewal rate 
by users.
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Introduc/on 
Arable weeds are essen4al for biodiversity and highly damaging to crop produc4on. So far, no non-chemical cura4ve 
weed-control op4on used alone is as efficient as herbicides. Because their seeds survive for several years in the soil, 
weeds must be managed at the rota4on scale to limit damage to the current and following crops. Weed management 
must therefore undergo a major paradigm shi{, from a single highly efficient cropping technique (i.e., herbicides) to a 
combina4on of mul4ple, par4ally efficient, and interac4ng techniques. This shi{ requires a change of perspec4ve from 
cure to preven4on, from chemical suppression to biological and mechanical regula4on, from single-minded control to 
reconciling damage and benefits resul4ng from weeds. To make these new weed-management strategies efficient and 
acceptable to farmers, they must be adapted to the pedoclima4c condi4ons, produc4on contexts and socio-economic 
specifici4es of their farms. 

The objec4ve of this paper was to demonstrate how a mechanis4c process-based model was developed and 
used to co-design crop ideotypes and cropping systems for weed management, thus bridging the gap between research 
on biophysical processes and agroecological weed management in real-life farms.  

Materials and Methods 
The methodology comprises three steps: (1) experiments in controlled condi4ons, experimental sta4ons and farmers' 
fields to understand biophysical processes that drive weed dynamics and impacts in agroecosystems, in rela4on to 
cropping techniques, (2) synthesize this knowledge into simula4on models and decision-support systems to produce 
emergent knowledge on agroecological levers, (3) design cropping systems and crop ideotypes adapted to different goals 
and local contexts. 



 

 

 

 
Figure 1. The modelling chain linking experiments, mechanistic modelling and decision-support systems for designing agroecological weed 

management strategies and the role of scientists, advisors and farmers (Colbach et al, 2021).  

These steps were conducted with farmers and advisors to ensure the opera4onal nature and adop4on of weed 
management strategies. Step 1 uses mechanis4c modelling to translate experimental results into equa4ons and 
parameters for the FLORSYS simula4on model (Figure 1). Step 2 uses FLORSYS simula4ons and data mining to co-design 
decision support systems. Step 3 uses these tools to evaluate and design crop ideotypes and cropping systems for 
agroecological weed management, with increasing degrees of farmer implica4on: (1) define the objec4ve of the 
simula4on study, (2) provide farm prac4ces for simula4ons via surveys and agricultural databases (DEPHY), (3) propose 
prototypes for simula4ons, (4) itera4vely design cropping-systems in par4cipatory workshops. La4n Hypercube Sampling 
(LHS) was used to determine simula4on plans, machine learning (classifica4on and regression trees, random forests) to 
build decision trees and meta-models, and op4misa4on algorithms to iden4fy solu4ons reconciling contras4ng 
objec4ves and constraints. 

Results and Discussion 

The FLORSYS model to synthesize knowledge in a virtual experimental field. The FLORSYS simula4on model started 
twenty years ago as a research tool (Colbach et al., 2021). Its inputs list all cultural opera4ons in detail over several years, 
together with daily weather data (past or future), soil characteris4cs and a regional weed species pool. The 3D individual-
based mul4species model simulates biophysical processes that are essen4al for non-chemical crop management and 
biological weed regula4on. To tailor FLORSYS to stakeholders' requirements and to simplify the mul4-criteria comparison 
of cropping systems, the detailed model outputs were aggregated into indicators of crop produc4on and weed impacts 
on crop produc4on and biodiversity, together with advisors and farmers. FLORSYS has evolved over 4me to account for 
stakeholders' ques4ons and the changing context, recently adding (1) processes such as plant–plant compe44on for 
water (to include tropical condi4ons and climate change), weed seed preda4on and vegeta4ve reproduc4on of perennial 
weeds (which increase in conserva4on agriculture), (2) species and varie4es to evaluate crop diversifica4on, 
(3) innova4ve management techniques (e.g., topping, agroecological infrastructures). 

Use FLORSYS to co-design decision support systems. FLORSYS was used as a virtual farm-field network, simula4ng 
thousands of cropping systems with different soils and weather records. The simula4on outputs were used to check and 
improve exis4ng decision-support systems, e.g., whether OdERA (hSps://www.agro-transfert-rt.org/ou4ls/odera/) was 
fit for climate change. But FLORSYS's importance for making process-scale knowledge available to different stakeholders 
was best illustrated with the development of DECIFLORSYS. This faster and easier-to-use metamodel was built from FLORSYS 
simula4ons using machine learning techniques. DECIFLORSYS was co-designed with farmers and crop advisors via surveys 
and par4cipatory workshops tes4ng successive versions to iden4fy (1) key func4ons, applica4ons and input/output 
formats, and (2) how to shi{ stakeholders' weed percep4on from eradica4on (focusing on weed abundance) to 
agroecological management (based on weed impacts). 
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Co-design cropping systems and crop ideotypes. The ideotypes and ideal systems iden4fied from simula4ons based on 
LHS plans and op4miza4on algorithms were o{en very different from exis4ng varie4es and cropping systems. Key 
techniques and rules for combining them were iden4fied, showing that the best 0-herbicide systems with well-4med 
false-seed-bed opera4ons and occasional mouldboard ploughing had a weed-caused yield loss of only 4%. These results 
and rules were then used to accompany farmers in par4cipatory workshops to design new cropping systems. 

Conclusions 

FLORSYS complements field experiments and local exper4se via long-term simula4ons with different climate scenarios, 
disentangling the effects of correlated prac4ces and predic4ng the effects of interac4ng techniques as well as giving 
access to difficult-to-measure state variables on soil, crops and weeds needed to understand how the agroecosystem 
func4ons. The benefits, crop ideotypes and op4mal agroecological cropping systems depended on the produc4on 
contexts and the scale (field vs farm vs landscape, year vs rota4on) at which objec4ves should be reconciled. Flexible 
rules are thus required to account for local specifici4es as well as models to establish these rules. 
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Introduc5on  

At present, there is a clear tension between the increasing environmental demands placed on agriculture and the need 
to maintain farmers’ presence and incomes in rural areas (e.g., EU Green Deal, CAP). We argue that addressing these 
compe4ng challenges requires the development and use of user-friendly, freely available, web-based opera4onal tools. 
Such tools do not provide a single “solu4on,” but rather a set of “op4ons” from which users can choose. In this way, they 
can both support the implementa4on of environmental and agricultural policies and empower stakeholders to take 
concrete ac4ons toward environmental sustainability. 

Our proposed solu4on is a network of Digital Twins and databases designed to support decision-making in agriculture, 
forestry, environmental management, and land-use policy. The LANDSUPPORT playorm is a free, web-based Geospa4al 
Cyber-Infrastructure, strongly grounded in process-based modelling, that integrates 15 macro-tools. In this contribu4on, 
we present evidence from five agriculture-related tools. 

Main elements of the digital twin: 

Figure 1 illustrates the three 4ers of the LANDSUPPORT geospa4al cyber-infrastructure: 

 

Figure 1. Main elements of the LANDSUPPORT geospatial DSS 

 

 

Agriculture-related tools 



 

 

 

The agriculture-related tools of the LANDSUPPORT playorm applied at both na4onal and regional scale. 

i. Climate resilience agriculture: Supports the development of robust knowledge for informed decision-making and 
enhances the climate resilience of agriculture and forestry; contributes to LULUCF repor4ng. 

ii. Best prac4ces: Gives clear results about the produc4on and the environmental impact in a given area in what-if 
scenarios of field management.  

iii. Nitrate and Pes4cide: Simulates nitrate and pes4cide balances under different management scenario, assis4ng in 
reducing leaching in farming systems. 

iv. Ecosystem services: Quan4fies ES and resilience to climate change, enabling the simula4on and evalua4on of 
alterna4ve agri-environmental and climate scenarios. 

v. Soil health: Assessing a bundle of key ecosystem services using a process-based modelling approach, providing a 
founda4on for assessing poten4al soil health status.  

Conclusions 

We argue that robust opera4onal Spa4al Decision Support Systems (S-DSS) represent a cri4cal step toward 
transforming data availability into concrete ac4ons for sustainable agricultural management. This can be achieved 
by ensuring: 
(i) a user-friendly GUI that conceals underlying complexity; 
(ii) implementa4on of the concept of land and soil mul4func4onality; 
(iii) adaptability to diverse user needs; 
(iv) incorpora4on of “what-if” modelling to empower decision-making; 
(v) low-cost transferability of the approach to new regions; and  

integra4on of boSom-up contribu4ons from users.  
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Abstract 

NASA’s A Virtual Agricultural Innova4ons Laboratory (AVAIL) project responds to farmer and agricultural sector 
stakeholders clamoring for decision support tools that will help them meet current and future challenges in food 
systems.  In par4cular, our outreach has indicated that interested par4es can be overwhelmed by the firehose of remote 
sensing products, ground datasets, weather datasets, crop models, and data-driven (machine learning) models that each 
offer a differing perspec4ve on agricultural systems. AVAIL is a technological framework developed to link together these 
different perspec4ves using process-based crop models (DSSAT and APSIM) as a basis for rec4fying observa4onal 
discrepancies and allowing farmers to answer “what if?” ques4ons that go beyond the observed experience (Figure 1).  
These include the ability to revisit previous disasters (e.g., floods, droughts, insect outbreaks, windstorms, heat waves) 
to explore whether alterna4ve seeds or management could have alleviated damages, as well as to explore risks of similar 
(or more severe) disasters striking in the future. The AVAIL team is also engaging with farmers and commodity groups to 
explore and priori4za4on of seed gene4cs and management op4ons that can meet a variety of farmer goals, including 
higher resource efficiency, yield stability, produc4vity increases, improved sustainability, adherence to policy 
requirements, and higher net farm returns. With the AVAIL system these innova4ve farming systems can be analyzed 
under normal and adverse condi4ons, as well as in diverse regions to explore geographic viability.   
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We will describe the ambi4on and early 
progress of AVAIL, including advances in 
balanced DSSAT within-season data 
assimila4on, bias-adjustment of satellite and 
ground datasets, high-resolu4on 
configura4on across heterogeneous 
landscapes, and ini4al tests of innova4ve 
strategies.  We will also describe plans for 
scaling this work to other regions and farming 
systems within AgMIP, as well as the poten4al 
transfer of crop model components into other 
process-based models that will open up new 
doors in mul4-model analysis and decision 
support for innova4on. 

 

 

 

Figure 1. Components of the AVAIL system 
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Introduc5on  

India is the second largest producer of wheat and rice crops with a produc4on of 101.29 Mt and 175.58 Mt, respec4vely 
(Dey and Dinesh, 2020). Wheat is cul4vated in the winter months when rainfall is limited, which highlights the need for 
efficient irriga4on water management. Due to the con4nuous submergence of paddy crops, it requires three 4mes 
higher water than other cereal crops (Rao et al., 2019; Ashfaq et al., 2020). Considering the growing compe44on for 
water resources, there is a need to explore novel methods for enhancing water use efficiency in irrigated paddy fields. 
Unmanned Aerial Vehicle (UAV)-remote sensing and crop modeling are useful tools to study the spa4al variability of 
crop growth and crop response to different water levels and irriga4on scenarios (Dar et al., 2017; Rathore et al., 2017). 
UAV remote sensing enables high-frequency, plot-scale observa4ons of canopy structure and vigor, while process-based 
crop models such as Decision Support System for Agrotechnology Transfer (DSSAT) capture genotype-environment-
management interac4ons across seasons. This study integrates UAV-derived vegeta4on indices with machine-learning 
(ML) algorithms and DSSAT simula4ons to (i) quan4fy biomass and yield response of rice under alternate wevng and 
drying (AWD) and wheat under different irriga4on methods (drip, sprinkler and flood) with variable rates of crop 
evapotranspira4on (100%, 75%, 50% and 0% rainfed treatment), and (ii) compare the performance of ensemble ML 
against DSSAT for yield es4ma4on across two seasons of the rice-wheat cropping system in Roorkee, India. 

Materials and Methods 

The field experiments were conducted at the Demonstra4on Farm of the Department of Water Resources Development 
and Management (WRD&M), Indian Ins4tute of Technology (IIT) Roorkee, USarakhand, India, during the Rabi 
(November–April) season for the wheat crop and the Kharif (June–October) season for the rice crop for two years. 
Weather data including rainfall, minimum temperature, maximum temperature, rela4ve humidity, wind speed, solar 
radia4on, and pan evapora4on were collected from the Agromet Observatory installed at the IIT Roorkee campus. The 
Q6 UAV (IdeaForge Pvt. Ltd., Mumbai, India) was used for data collec4on at different growth stages of the rice-wheat 
cropping system. Vegeta4on indices (e.g. Normalized Difference Vegeta4on Index), gray-level co-occurrence matrix 
(GLCM) textural features, and biophysical proper4es (LAI and plant height) were es4mated from the image processing. 
Machine learning (ML) algorithms, viz. Support Vector Machine (SVM), XGBoost, Adaboost, Gradient Boos4ng Decision 
Tree (GBDT), and Random Forest were developed using the UAV-based imagery and used for the biomass and yield 
es4ma4on of the rice-wheat cropping system. The ML models were ensembled with Random forest as a meta learner 
and the other four models as base models. Hyperparameters were tuned with cross-validated grid search. Biomass and 
yield were also simulated using the DSSAT crop modeling for the two-year field experiment data. The efficacy of the 
DSSAT model and ML algorithms was compared for the biomass and yield simula4on. The Model performance was 



 

 

 

evaluated with the coefficient of determina4on (R²), Kling–Gupta efficiency (KGE), normalized root mean squared error 
(NRMSE), and percent bias (PBIAS). 

Results and Discussion  

The biomass and yield results obtained from the different ML algorithms and the DSSAT crop model were compared. 
The ensemble ML approach using UAV-derived spectral, textural, and biophysical features delivered the strongest 
predic4ve performance for plot-scale yield es4ma4on. During the training process of the ensemble random forest 
model, it performed beSer with a higher KGE (0.91) and a lower value of NRMSE (0.033), and a minimal PBIAS of 0.13%. 
The ensemble random forest model performed beSer during the tes4ng process of the rice yield es4ma4on (R2 = 0.60, 
KGE = 0.71, PBIAS = −2.26%, NRMSE = 0.136). For wheat yield es4ma4on, training results were similar with strong model 
performance (R2 = 0.8137, KGE = 0.83, PBIAS = 1.36%, NRMSE = 0.470). The stacked model (RF meta-learner) achieved 
strong goodness-of-fit with low error metrics in both training and tes4ng, outperforming individual learners for rice and 
wheat yield es4ma4on. These findings indicate that fusing high-resolu4on UAV features with an ensemble ML 
framework yields accurate, spa4ally-varied predic4ons suitable for plot-level decision support. The improvements in KGE 
and NRMSE, together with low absolute bias, underscore the model’s ability to capture both correla4on structure and 
magnitude of yields. 

Conclusions  

The findings demonstrate that combining UAV-derived spectral, textural, and biophysical features with an ensemble 
machine learning framework offers the most accurate plot-scale yield es4ma4on for the rice-wheat cropping system, 
outperforming individual learners and a stand-alone process model. The DSSAT model added mechanis4c insight into 
genotype-environment-management interac4ons, clarifying seasonal dynamics that purely data-driven ML models treat 
as a black box. The UAV-ML and DSSAT workflow captured both the fine-scale spa4al variability needed for site-specific 
field decisions and the process understanding needed for generaliza4on across the seasons. This integrated workflow 
supports the UN Sustainable Development Goals (SDGs)—specifically SDG 2 (Zero Hunger) and SDG 6 (Clean Water and 
Sanita4on). 
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Introduc5on 

Smallholder farmers in Sub-Saharan Africa largely rely on rainfed agriculture. As a result, their crop produc4vity is highly 
vulnerable to the impacts of climate change and variability. Providing access to climate informa4on services is therefore 
seen as a cri4cal way to help these farmers adapt their crop management and reduce climate-related risks. Although 
research has extensively explored the factors that drive the adop4on of these services, their actual impact on crop 
produc4vity has received liSle aSen4on (Nyoni et al., 2024). Using a modelling approach over five study sites, the 
objec4ve of our research was to determine if op4mal sowing date, based on a perfect rainfall forecast knowledge, can 
significantly improve yields and lower their variability compared to farmer prac4ces informed with lower levels of 
climate informa4on. We also aim to assess whether this poten4al value of rainfall forecast is consistent across different 
loca4ons. 

Materials and Methods 

We used five study sites in sub-Saharan Africa (Benin, Ethiopia, Ghana, Mali, and Rwanda) with contrasted climate. These 
sites were selected due to the availability of historical daily climate data series spanning from 1980 to 2010 and the 
extensive work on model calibra4on and valida4on that has been priorly conducted at these loca4ons (Falconnier et al., 
2020). Using the ACME crop modelling framework (Giner et al., 2024) that includes the three crop models STICS, DSSAT 
and CELSIUS, we simulated water-limited maize yield with a 10-day sowing date interval for each year of the climate data 
series. We then extracted contras4ng sowing dates corresponding to three levels of climate informa4on, namely (i) 
sd_20, the sowing date of a “average” farmer following basic extension recommenda4on of 20 mm rainfall cumulated 
over two days to iden4fy the onset of the rainy season; (ii) sd_avg,  the sowing date of an “informed” farmer who would 
have access to the sowing date leading to maximum simulated water-limited yield, averaged across 30 years of historical 
weather data, and would applied that exact same sowing date every year; and (iii) sd_opt, the sowing date of a 
“clairvoyant” farmer who would have access to perfect weather forecast to determine the sowing date that leads to the 
highest simulated water-limited yield each year. Yield gain was then calculated as the percentage difference between 
the simulated yield from the informed and clairvoyant farmer rela4ve to the one of the average farmer. 

 

 

 

 



 

 

 

Results and Discussion 

 
Figure 1. Boxplot distribution of the sowing date difference comparing average farmer's strategy (sd_20) to the informed (sd_avg, red) and 

clairvoyant farmer’s (sd_opt, blue) strategies for each location and each model over 30 simulated cropping seasons. ME is the mean of the three 
models ensemble. 

Our simula4ons indicate considerable varia4on in sowing date difference across sites and models when comparing three 
levels of climate informa4on knowledge. Benin (BEOU) and Ethiopia (ETBA) exhibit consistently large posi4ve median 
differences (up to 80 days). In contrast, Ghana (GHKP) and Rwanda (RWBU) show smaller median differences, even 
displaying nega4ve median differences. For both informed and clairvoyant farmer strategies, the median sowing date 
differences are o{en comparable for a given site-model combina4on. But the variance of the clairvoyant strategy is 
always larger. 

 
Figure 1. Boxplot distribution of the yield gain comparing average farmer's strategy (sd_20) to the informed (sd_avg, red) and clairvoyant farmer’s 

(sd_opt, blue) strategies for each location and each model over 30 simulated cropping seasons. ME is the mean of the three models ensemble. 

These varia4ons in sowing dates differences translate into a considerable varia4on in yield gain. The median yield gain 
ranges from approximately 0% to 70%, varying by site and crop model. In most cases, median yield gain is very similar 
for both informed and clairvoyant farmer strategies. But in few cases, informed strategy leads to very low yield gain or 
even yield losses. It demonstrates that the value of op4mising the sowing date is highly dependent on local clima4c 
regimes and the baseline prac4ce, implying that investment in high-skill seasonal climate predic4on should be 
strategically targeted toward highly variable and sensi4ve regions. The results also indicate that each model simulates 
water stress differently. Hence, improving climate forecast should go hand in hand with improving crop models’ accuracy 
to develop robust decision support tools for farmers. 

Conclusions 

Our study presents a highly promising proof of concept, demonstra4ng the power of our modeling approach to explore 
the complex interac4on between sowing dates, rainfall variability, and soil condi4ons. This framework provides cri4cal 
insights into the value of developing more accurate weather forecasts, par4cularly for iden4fying and targe4ng regions 



 

 

 

where the 4ming of plan4ng has the most significant impact on yields. The results also highlight the need for con4nued 
research into improving crop models’ accuracy. The next step will be to inves4gate the interac4ons with fer4liza4on 
strategies. The cost-efficiency of the modelling approach makes it a scalable solu4on, opening the door for its applica4on 
across larger regions, for mul4ple staple crops, to support sustainable farming prac4ces on a broader scale. 
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Introduc5on 

Crop growth models are powerful tools for assis4ng decision-making processes in agriculture. However, reliable 
es4ma4on of crop development and in-season yield forecas4ng remains a challenge, especially under current weather 
condi4ons. Remote sensing (RS) technologies can provide both temporal and spa4al data for vegeta4on indices to 
es4mate the current leaf area index (LAI), which can be used to improve crop modeling predic4ons (Richev et al., 2019). 
Integra4ng RS data into crop models can ul4mately strengthen decision-making by enabling growers to beSer manage 
weather risks, adapt their prac4ces, and op4mize resource use (Zhuang et al., 2024). The overall goal of this project was 
to develop a remote sensing module for integra4on into the Cropping System Model (CSM) of the Decision Support 
System for Agrotechnology Transfer (DSSAT; Hoogenboom et al., 2019; Hoogenboom et al., 2024) to assimilate remotely 
sensed LAI (RSLAI) and enable in-season forecas4ng of crop yield. 

Materials and Methods 

The DSSAT-RS module was developed in Fortran within the DSSAT-CSM source code. This module updates crop model 
state variables based on RSLAI es4mates by propor4onally adjus4ng the plant growth parameter through a novel 
approach named direct assimila4on. To enable interac4on with crop growth models during run4me, DSSAT-RS leverages 
the default DSSAT 4me-series data file. The DSSAT-RS was coupled with the CSM-CROPGRO, a model designed for 
simula4ng grain legumes, through internal calls within the main subrou4ne of the crop model (Figure 1A).  

Model performance was evaluated based on soybean experiments conducted in Teresina, Piaui, Brazil, in 2019 
(Figueiredo Moura da Silva et al., 2024). The experiment included two treatments, one with no nitrogen applied (0 kg 
ha-1) and another with 1000 kg ha-1 of nitrogen, both under irriga4on restricted to 50% of the crop water requirements. 
High-resolu4on satellite imagery, obtained from Planet Labs’ PlanetScope (hSps://www.planet.com) during the growing 
season, was used to es4mate LAI derived from the Normalized Difference Vegeta4on Index (NDVI).  

Model outputs were compared against field measurements of LAI and grain weight collected throughout the growing 
season. Furthermore, the performance of the novel assimila4on method was assessed against the uncoupled model and 
other RS assimila4on techniques used in the literature, such as linear interpola4on and Kalman filtering. 

Results and Discussion 

The coupling of the DSSAT-RS module with the CSM-CROPGRO-Soybean model improved performance across both 
water-limited treatments. A total of 28 satellite images were collected for the experimental site during the 2019 
soybean growing season. The default model underes4mated both LAI and grain yield compared with the field data. All 
remote sensing assimila4on approaches consistently outperformed the default simula4on. The direct assimila4on 
method was the most effec4ve at capturing both LAI trajectories and grain weight accumula4on for the treatments 
with a 0 kg N ha-1 (Figure 1B I) and 1000 kg N ha-1 applica4on rate (Figure 1B II). 



 

 

 

 
Figure 1. Diagram representing the integration of the remote sensing module and the CROPGRO model within the DSSAT-CSM (a) and the coupled 
model outputs for the soybean experiment conducted in Teresina, Piaui, Brazil, in 2019 (B) with two water-limited treatments with 0 kg N ha⁻¹ (I) 

and 1000 kg N ha⁻¹ applied (II). 

Conclusions 

Integra4ng remote sensing data into dynamic crop growth models significantly improves the precision and reliability of 
yield predic4ons. The DSSAT-RS module coupled with the CSM-CROPGRO model and evaluated for soybean grown 
under contras4ng condi4ons, improved the predic4ons for crop growth and final yield predic4ons. This new module in 
DSSAT provides a robust framework for integra4ng RS data into the DSSAT-CSM and the use of the novel direct 
assimila4on method for in-season forecas4ng. 
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Introduc5on  

Op4mising cropping systems is cri4cal for increasing agricultural produc4vity while reducing environmental impacts. In 
Denmark, where agriculture covers more than 55% of the total land area (Hansen et al., 2025), improving 
management prac4ces is both necessary and urgent. Process-based models such as Landscape Denitrifica4on 
Decomposi4on (LDNDC) (Haas et al., 2013) are widely used for scenario analysis, but their computa4onal demands 
limit their applica4on at the na4onal scale, where thousands of management combina4ons must be tested within 
defined decision boundaries. 

Materials and Methods 

To address this challenge, we developed MLDNDC, a machine learning–based surrogate model of LDNDC. The 
surrogate predicts key agro-environmental outcomes including crop yield, nitrous oxide (N₂O) emissions, nitrate 
leaching (NO₃⁻), and soil organic carbon (SOC) changes at na4onal scale in Denmark. Synthe4c datasets generated with 
LDNDC were used to train several machine learning algorithms within a single task learning framework, extended 
through a custom func4on for mul4-task inference, enabling simultaneous op4misa4on of mul4ple outputs. 

Results and Discussion  

The surrogate model substan4ally reduced computa4onal costs and processing 4me, while retaining high predic4ve 
accuracy across all variables. Coupled with the NSGA-II op4misa4on algorithm (Deb et al., 2002), MLDNDC enabled 
efficient explora4on of trade-offs between produc4vity and environmental objec4ves. 

 



 

 

 

 
Figure 1. Mean percentage change (± SD) in N₂O emissions, NO₃⁻ leaching, crop yield, and soil organic carbon (SOC) under optimized management 

scenarios in Denmark. Reductions are shown for N₂O and NO₃⁻, while increases are shown for yield and SOC. 

Optimizing cropping systems in Denmark can enhance crop yields by up to 10%, increase soil organic carbon stocks by 
more than 3%, and reduce N₂O emissions and NO₃⁻ leaching by up to 27% and 25%, respectively. Optimizing cropping 
systems in Denmark demonstrates clear potential for advancing both productivity and environmental sustainability. 
The projected increase in crop yields by up to 10% highlights how improved management can help meet growing food 
demands without expanding cultivated land. At the same time, the enhancement of soil organic carbon stocks by 
more than 3% contributes to long-term soil fertility and carbon sequestration, supporting climate change mitigation 
goals. Importantly, reductions of up to 27% in N₂O emissions and 25% in NO₃⁻ leaching indicate that optimized 
practices can substantially decrease agriculture’s contribution to greenhouse gas emissions and water pollution. 
Together, these outcomes suggest that targeted management interventions can simultaneously deliver agronomic, 
environmental, and climate benefits, aligning with Denmark’s green transition objectives. 

Conclusions 

This methodology demonstrates the poten4al of machine learning-based surrogates to replace computa4onally 
intensive process-based models for na4onal-scale op4misa4on. By facilita4ng rapid scenario tes4ng, MLDNDC provides 
a scalable and prac4cal decision-support tool for advancing sustainable agricultural management and policy 
development. 
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Introduc5on 

Accurate crop yield forecas4ng is crucial for agricultural planning, food security, and policy. It aids farmers in resource 
op4miza4on, market stabiliza4on, and government preparedness. Since yield data is only available post-season, early 
predic4on methods are essen4al. This study uses a modified Temporal Fusion Transformer (TFT), a state-of-the-art deep 
learning model for 4me series forecas4ng (Junankar et al., 2023). The TFT offers high predic4ve accuracy and 
interpretability, iden4fying key factors influencing yields (e.g., weather, environment, management prac4ces). This is 
valuable for precision agriculture. We forecast German winter wheat yields using the TFT. The model integrated sta4c 
data (soil, landscape), historical yields, and dynamic climate data (temperature, rainfall). The TFT captured temporal 
dependencies and priori4zed features, providing reliable, interpretable forecasts pre-harvest. This demonstrates 
advanced deep learning's poten4al for data-driven agricultural decision-making, offering transparent insights into yield 
drivers. 

Materials and Methods 

In this study, we modified the Temporal Fusion Transformer (TFT) to improve high-resolu4on winter wheat yield 
forecas4ng across Germany. The model flexibly integrates sta4c covariates both real-valued (soil quality, topography) 
and categorical (soil type)- enhancing spa4al heterogeneity capture. Germany was divided into 2.5 km hexagonal grids, 
with NUTS-3 yields downscaled using EVI as a spa4al proxy. Time-varying inputs included daily ERA5-Land climate 
variables (temperature, precipita4on, radia4on) and ECMWF seasonal forecasts for future weather during the growing 
season. Phenology data defined biologically relevant growth windows; data outside sowing-to-harvest were masked, 
focusing the model on ac4ve growth periods. Training used 70% of the growing period as input and 30% as forecast 
horizon, enabling accurate end-of-season predic4ons before harvest. This phenology-aligned, spa4ally detailed, and 
interpretability-focused TFT framework advances reliable and ac4onable crop yield forecas4ng across Germany. 

Results and Discussion 

The modified Temporal Fusion Transformer (TFT) demonstrated strong and consistent performance in forecas4ng end-
of-season winter wheat yields across Germany. Compared to tradi4onal machine learning models such as Random 
Forests and Support Vector Machines, as well as standard deep learning approaches like LSTMs, the TFT consistently 
provided higher predic4ve accuracy and robustness (Vijayasuganthi et al., 2025). Its architecture is par4cularly effec4ve 
in capturing complex temporal dependencies, non-linear rela4onships, and interac4ons between sta4c and dynamic 
predictors, making it well-suited for 4me series–based crop yield forecas4ng. A key strength of the TFT lies in its 



 

 

 

interpretability. Sta4c covariates, including soil quality and landscape features, were also important, highligh4ng the 
cri4cal role of spa4al heterogeneity in shaping crop produc4vity. The phenology-informed data alignment and the 
structured division of the growing period into input and forecas4ng windows further enhanced model performance. By 
focusing exclusively on biologically relevant growth stages and masking non-growth periods, the TFT was able to learn 
from meaningful temporal paSerns while genera4ng reliable end-of-season forecasts well before harvest. This capability 
is crucial for suppor4ng 4mely farm-level interven4ons, market planning, and na4onal policy decisions. 

These findings align with advances in smart farming and hybrid modeling, where integra4ng data-driven models with 
process-based or remote sensing data improves yield predic4on, resource efficiency, and decision-making (Yang et al., 
2025). Hybrid models combining crop growth parameters and vegeta4on indices with aSen4on-based architectures 
emphasize physiological and spectral features as key predictors, while morphological traits contribute less, highligh4ng 
the TFT’s capacity to capture growth stage–specific environmental and management effects. This study confirms that 
Transformer-based models offer superior accuracy, robustness, and interpretability versus tradi4onal machine learning 
and standard deep learning. By integra4ng sta4c and dynamic inputs and accoun4ng for phenology, the TFT provides a 
scalable, prac4cal framework for data-driven decisions from farm management to regional and na4onal planning. 

Conclusions 

By integra4ng sta4c factors, historical yield data, and dynamic climate and vegeta4on inputs, and by aligning predic4ons 
with phenology, the TFT effec4vely captures spa4al and temporal variability in crop growth. Overall, the approach 
highlights the poten4al of aSen4on-based deep learning architectures to support data-driven, precision agriculture and 
strategic agricultural planning. 
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Introduc5on 

Modern agriculture faces increasing challenges from climate variability associated with climate change and the need for 
precise resource management (Lobell et al., 2011; Ray et al., 2015). In many regions, heat stress during sensi4ve crop 
growth stages can result in substan4al yield losses, while unpredictable weather paSerns make it challenging for growers 
to intervene effec4vely (Zhao et al., 2017). Tradi4onally, such decisions rely on field scou4ng, historical averages, or 
single-source data, which o{en fail to capture the dynamic interac4ons between weather, soil, and crop physiology. Crop 
models have emerged as tools to support agricultural decision-making, providing data-driven insights that enhance 
produc4vity while op4mizing inputs used by growers (Boote et al., 2013). 

Materials and Methods 

This study presents the development and applica4on of three integrated models developed as APIs (Applica4on 
Programming Interface) designed to support growers through comprehensive crop modelling capabili4es. The integrated 
modelling capabili4es include (1) the Rela4ve Yield model for predic4on and benchmarking; (2) the Growth Stage 
Predic4on model for phenological forecas4ng (Soler et al., 2007); (3) the Abio4c Stress model for environmental stress 
assessment (MiSler, 2006; Suzuki et al., 2014). Model calibra4on was performed using genotype-specific parameters 
derived from mul4ple field trials across different geographical regions. Crop-specific coefficients were calibrated using 
field trial data with cross-valida4on techniques to ensure model accuracy across diverse environmental condi4ons and 
management prac4ces (Wallach et al., 2018). Collec4vely, these APIs integrate weather data, soil characteris4cs, and 
crop-specific parameters to enable data-driven decisions across diverse geographies and temporal scales. 

Results and Discussion 

This integra4on provides real-4me assessment of crop condi4ons for individual fields and alerts growers when 
interven4ons are needed. To demonstrate prac4cal applica4ons, we present two dis4nct use cases. For rice produc4on 
in India and Pakistan, the tool enables smart applica4on 4ming of biological products to mi4gate heat stress during 
cri4cal growth periods (Jagadish et al., 2015; Coast et al., 2015). These integrated models assist iden4fying op4mal 
applica4on windows by combining real-4me growth stage predic4ons with diurnal and nocturnal temperature stress 
indices, allowing growers to proac4vely protect yield during vulnerable developmental phases. For corn produc4on in 
Brazil, the model provides in-season rela4ve yield predic4ons from plan4ng to physiological maturity, with stable 
predic4ons approximately 35–40 days before physiological maturity, enabling informed harvest planning and sales 
decisions (Mourtzinis et al., 2015; Basso et al., 2013). 
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Conclusions 
These models, coupled with visualiza4on capabili4es, illustrate how advanced crop modelling can be effec4vely 
translated into prac4cal decision support tools, bridging the gap between scien4fic research and on-farm applica4on for 
both technical and non-technical users (Rose et al., 2016; Antle et al., 2017). 
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Introduc5on 

Large Language Models (LLMs) are rapidly evolving and are increasingly adopted in many different fields to write or 
summarise text and computer code. Thanks to the chain of thought and prompt refinement techniques, they show 
reasoning and quan4ta4ve capabili4es that allow them to accomplish tasks well beyond simply analysing and wri4ng 
text (Wei et al., 2022; Feng et al., 2023). Therefore, it is likely that LLMs will be increasingly used for decision support, 
including in agriculture. LLMs could be fed with real-4me data (from sensors, models, or weather forecasts) and suggest 
the 4ming and rate of applica4on of water, fer4lisers, and pes4cides. The literature already reports tests of LLMs making 
irriga4on and nitrogen decisions. In some cases, the LLM was trained via reinforced learning to improve answer quality 
(e.g. Wu et al., 2024). Here, we wanted to verify the hypothesis that LLMs have a basic capacity to suggest proper 
decisions in irriga4on management without specific training, thus providing support to farmers and advisors who cannot 
train them. 

Materials and Methods 

The irriga4on case study used for the test involved maize (Zea mays L.) cul4va4on at Bushland (TX, USA). We first used 
a cropping system mechanis4c daily 4me step model to simulate soil water content and irriga4on demand during a 
growing season. The model is a simplified version of CropSystVB (Bechini and Stöckle, 2007). The inputs of this model 
are crop parameters (used to simulate crop development, canopy cover, and crop transpira4on), soil sand and clay 
concentra4on (used to calculate the parameters of the water reten4on curve, and the soil water content at field capacity 
and permanent wil4ng point), and daily weather data (rainfall, air temperature, air humidity, global solar radia4on, and 
wind speed). The model simulates crop development, green canopy cover, crop height, root depth, biomass growth, 
crop transpira4on, soil evapora4on, and soil water content for 0.1-m layers. Irriga4on is scheduled when the soil 
available water drops below user-provided maximum allowable deple4on (MAD), which triggers the model to refill to 
field capacity the por4on of the soil profile occupied by roots. We applied this model for daily simula4ons in 2018, on 
three soil textures (loamy sand, loam, and clay loam), and three levels of maximum allowable deple4on (0.4, 0.5, or 0.6) 
to generate many irriga4on scheduling condi4ons (1386 combina4ons based on 154 days, three soils, and three MAD). 
We then submiSed a prompt to ChatGPT 4. The prompt included soil type, water content of 0.3-m soil layers (as could 
be provided by sensors), and green canopy ground cover that could be obtained from remotely derived NDVI. We added, 
as “weather forecast”, the daily values of reference evapotranspira4on (ET0) and the rainfall for the next seven days and 
provided the desired maximum allowable deple4on. We finally asked ChatGPT to indicate, based on this informa4on, 
when and how much irriga4on would be needed in the next seven days. The prompt was submiSed manually (for a few 
selected cases) and automa4cally (with batch runs using APIs, for all irriga4on scheduling condi4ons). ChatGPT outputs 
were compared with the irriga4on amounts calculated by the model, considered as a benchmark. The prompt was 
adjusted to reach a sa4sfactory version of it a{er the first manual and automa4c tests. 
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Results and Discussion  

ChatGPT reasoning was appropriate, and almost completely correct, with the first manual aSempt. It used a soil water 
balance approach, by es4ma4ng field capacity, wil4ng point and total available water for the specific soil type, then 
calculated the current soil water deple4on (based on actual water storage), actual crop evapotranspira4on (ETc) for the 
next seven days, and finally, a{er comparing the actual with the maximum allowable deple4on, it calculated the 
irriga4on required. ETc was always calculated correctly as kc ETo, using appropriate values of kc, derived from the green 
canopy cover. The applica4on of the water balance was conceptually sound, adding rainfall and subtrac4ng ETc. However, 
ini4ally, ChatGPT frequently failed (not irriga4ng when needed, or strongly unders4ma4ng the amount), either because 
some4mes it confounded the concepts of soil water content and plant available water, or because it decided only to 
restore the an4cipated ETc, not refilling the soil profile to field capacity. Therefore, one change to the prompt included 
the explicit request to refill the soil to field capacity. This draws our first conclusion: the specificity of the ques4on 
maSers. The fewer things that are given for granted in the prompt, the beSer the LLM will work. 

We also noted that it is useful and important to ask ChatGPT to provide the reasoning it followed, the calcula4on steps, 
and all the sources used, allowing the user to understand what was done, and apparently forcing the LLM to check more 
thoroughly the solu4on to be presented. Another difficulty that arises during the op4miza4on of the prompt is that the 
answers of a LLM are stochas4c, not determinis4c. Therefore, outputs can vary from test to test. This variability is 
influenced by LLM’s parameters such as temperature, which controls the degree of randomness in the model’s 
responses: a lower temperature tends to produce more consistent, determinis4c-like answers, while a higher 
temperature increases diversity and crea4vity, at the cost of reproducibility.Our op4mized version of the prompt with 
example data is: “You are an irriga4on engineer. There is a corn crop in a field at Bushland (TX) in the year 2018. The soil 
type is loam, with a volumetric field capacity of 0.260 and a permanent wil4ng point of 0.118 m³/m³. The green canopy 
cover is 0.87. The volumetric soil water content (m³/m³) in the 0-30 cm soil layer is 0.177, in the 30-60 cm layer is 0.193, 
in the 60-90 cm layer is 0.210, in the 90-120 cm layer is 0.227, and in the 120-150 cm layer is 0.245. In the next seven 
days, weather forecasts predict 7.41, 7.55, 8.16, 8.73, 6.66, 5.06, and 6.7 mm/d of reference crop evapotranspira4on, 
and 0, 17.48, 0, 0, 0, 0, 0 mm/d of precipita4on. Based on this informa4on, determine if irriga4on to refill the 150-cm 
soil profile to field capacity is needed in the next seven days if the maximum allowable deple4on for this crop is 0.5. 
Provide the day (1 through 7) and the amount in mm of irriga4on if needed. Explain the reasoning and give details of 
the calcula4on steps”. Figure 1 shows some example results. 

 



 

 

 

Figure 1. Example results of ChatGPT irrigation decisions (on the Y-axis) for a loam soil with a field capacity of 0.26 m3 m-3 and a wilting point of 0.12 
m3 m-3, compared with the results of a dynamic mechanistic crop model (CropSystVB), on the X-axis. The graph shows that ChatGPT irrigations were 

mostly applied on the same day as predicted by CropSystVB, with a few exceptions with one-day difference. In addition to the data shown in the 
Figure, there are six data points with both ChatGPT and CropSystVB showing zero irrigation.  

Conclusions 

If properly prompted, the performance of ChatGPT in iden4fying dates and amounts of irriga4on events was sa4sfactory. 
This approach has the poten4al to be used by anyone and anywhere with good sensors and access to weather 
forecas4ng. 
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Introduc5on 

Cul4var choice is a crucial decision-making process for farmers and technicians, paving the road for a successful cropping 
season. Crop models can effec4vely support the selec4on of the most suitable cul4var for a given clima4c, edaphic, and 
managment context to maximize yields and profitability, as they enable the rapid explora4on of a wide range of agro-
clima4c condi4ons that would be difficult to capture with tradi4onal methods (e.g., mul4-environment trials). The laSer 
indeed, being limited in space and 4me, o{en fail to properly characterize genotype (G) × environment (E) × 
management (M) interac4ons (Cooper at al., 2021). By using pea (Pisum sa`vum L.) in Northern Italy as a case study, we 
show how crop models combined with spa4al explora4on of climate and soil features can be used to inves4gate cul4var 
responses under different environments, providing context-specific rankings of available genotypes to support decisions 
on cul4var choice. 

Materials and Methods 

The study focused on the Emilia-Romagna region, one of the most relevant pea cul4va4on area in Italy. An agro-clima4c 
zona4on was carried out by considering the two main sowing windows and intersec4ng climate and soil data. The results 
are 24 homogeneous agro-clima4c contexts for which the analysis was performed. Field trials - involving one of the most 
important company for canned vegetables in Europe (Conserve Italia Soc. Coop. Agricola) – were carried out to 
parameterize the crop model STICS (Brisson et al., 2009) for the study area and to derive distribu4ons of func4onal traits 
related to phenology, canopy structure, biomass par44oning, and photosynthesis for 20 Pisum sa`vum L. modern 
cul4vars. Variance-based global sensi4vity analysis was run for each agroclima4c context to design ideotypes that 
maximize yield and its stability (Ravasi et al., 2020). The similarity between the phenotypic profiles of the 20 pea cul4vars 
and the context-specific ideotypes was then evaluated through the weighted Euclidean distance method (Carvalho et 
al., 2002) adapted to in-silico analysis by Paleari et al. (2020), providing context-specific ranking of cul4vars to drive 
cul4var choice (Fig. 1). 

Results and Discussion 

Sensi4vity analysis highlighted the key role of radia4on use efficiency during the reproduc4ve phase and grain filling 
dura4on under humid climate condi4ons – being the crop not irrigated - whereas phenological traits involved with 
earliness (thermal 4me to first pod) played a crucial role for yield and its stability regardless of the condi4ons explored. 
This heterogeneity in traits relevance reflected on the ideotypes designed and, thus, on the most promising cul4vars for 
a given agro-clima4c context. As shown in Fig. 1 indeed, a clear re-ranking of cul4vars was found according to the 
condi4ons explored, with some cul4vars being ranked first in drier climates (e.g., cv. Belvedere) while placed in 11th 
posi4on under more humid contexts. 



 

 

 

 
Figure 1. Central panel: example of the agro-clima@c characteriza@on of the study area obtained by clustering the Synte@c Agroclima@c Index (SAM, 
normalized difference of rainfall and reference evapotranspira@on during the cropping season) calculated for late sowings. Nega@ve SAM values 
indicate dry climates while posi@ve values highlight humid condi@ons. Le� and right panels show two examples of cul@var ranking obrained for 
different condi@ons, humid (right panel) and dry (le� panel). In the ranking, green points indicate recommended, blue represents second-choice 
varie@es, and red highlights less suitable varie@es. 

Conclusions 

This study highlighted the relevance of decision support tools for cul4var choice explicitly accoun4ng for G × E × M, even 
in rela4vely small areas as that inves4gated in this study. A clear re-ranking of cul4vars was indeed observed while 
changing agro-clima4c condi4ons. The simple methodology used to derive the cul4var phenotypic profiles allows to 
easily extend the framework to other pea cul4vars, making the system easily adapted to new cul4var release. 
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Introduc5on 

Digital twins present real-world objects as their virtual en44es and can provide decision support in various tasks in 
agriculture. We developed a digital twin for op4mal field management. It simulates the impact of different management 
op4ons, e.g., on yield and grain quality, and is linked, e.g., to farm management informa4on systems, weather data 
interfaces, ISOBUS task files, and remote sensing data sources. 

The aim of this study was to create an open-source data model interface for the digital twin. The data model increases 
flexibility by enabling the same interface to the digital twin, regardless of the modelling approach within it. The NGSI-LD 
specifica4on for presen4ng virtual digital twin en44es and providing standardized communica4on (ETSI, 2021) was 
followed to build a documented data model. A use case was created to demonstrate the use of the digital twin via the 
data model. 

Materials and Methods 

Management of the digital twin data via the NGSI-LD real-4me interface was implemented with the FIWARE open-source 
context-broker (FIWARE, 2021). Seman4c interoperability was ensured by using ICASA vocabulary with required 
extensions. A data model was published as part of the open-source farmingpy Python package 
(hSps://github.com/TwinYields/farmingpy/tree/datamodel). Figure 1 presents the data flows through the data model. 

The use case presented a digital twin of a spring wheat field in Jokioinen, Finland, in growing season 2024. WOFOST with 
soil nitrogen and carbon balance module SNOMIN (Berghuijs et al., 2024) was used as a crop model in the use case. The 
input data included farm management, ISOBUS task, weather, remote sensing, crop, and soil data. 

Results and Discussion 

The data model was feasible for implemen4ng the digital twin to a new use case and for providing input data for WOFOST 
crop model. The data model is built in a way that the modelling approach can be changed. However, a script for a data 
format conversion from the data model format to a model-specific format needs to be created for each new model. New 
models might require extensions to input en44es of the data model. NGSI-LD data model enables extensions without 
breaking compa4bility with old versions. 

 

https://github.com/TwinYields/farmingpy/tree/datamodel


 

 

 

 
Figure 1. Data flow via the digital twin data model between data sources and models 

Conclusions 

The NGSI-LD data model provides a documented interface for the digital twin and improves flexibility with modelling 
approaches. The next steps could include tes4ng the digital twin with data flows from a real farm via the context-broker 
or comparing mul4ple modelling approaches. 
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Introduc5on  

Crop growth models are essen4al tools for assessing food security and developing adapta4on strategies in response to 
global change. However, their predic4ve capacity is o{en constrained by the limited availability of reliable site-specific 
input parameters and the associated high uncertainty. Remote sensing offers a unique opportunity to overcome these 
limita4ons by providing spa4ally and temporally explicit observa4ons that can be integrated into crop models. Yet, 
systema4c assessments of how remotely sensed traits can improve simula4ons across crop growth models and 
management prac4ces remain scarce. This study presents a collabora4ve effort ini4ated through an interna4onal 
hackathon organised by the Pan-European Network of Green Deal Agriculture and Forestry Earth Observa4on Science 
(PANGEOS) European Coopera4on in Science and Technology (COST) ac4on, bringing together a mul4disciplinary group 
of researchers to evaluate the added value of remote sensing in crop model calibra4on and predic4on. 



 

 

 

Materials and Methods  

The data used for this work resulted from an experiment conducted in the Netherlands on potatoes grown at two sites 
with different soil types. At each site, six different management prac4ces and three genotypes were present, resul4ng 
in 42 plots per site and a total of 84 plots. Among the management prac4ces, three nitrogen fer4lisa4on levels and two 
irriga4on levels were examined. During the growing season, measurements of leaf area index (LAI), chlorophyll content, 
dry mass of different organs, and canopy reflectance were collected. These observa4ons provide a unique dataset for 
linking field measurements with remote sensing retrievals and crop model performance. 

The canopy reflectance is used for LAI, chlorophyll content and dry mass retrieval using two approaches: inversion of the 
Soil Canopy Observa4on of Photosynthesis and Energy fluxes (SCOPE) radia4ve transfer model and machine learning, 
both with explicit propaga4on of uncertain4es from the measurements to the parameters. The derived parameters are 
then used to calibrate seven widely used crop growth models, evaluated in three modes: (i) standard sevngs without 
calibra4on, (ii) calibra4on based on field measurements, and (iii) calibra4on based on remote sensing retrievals. This 
systema4c comparison enables us to quan4fy the degree to which remote sensing informa4on can improve the accuracy 
of yield es4ma4on and reduce the uncertainty of simula4ons across sites, varie4es, and management regimes. 

Results and Discussion  

The expected outcomes of this ongoing work are twofold. First, we anticipate that integrating remotely sensed 
parameters will reduce the discrepancies between simulated and observed crop performance compared to uncalibrated 
models. Second, we expect that the explicit accounting of uncertainty in remote sensing retrievals will provide a more 
robust framework for evaluating model reliability. By testing this hypothesis, the study provides a rigorous basis for 
advancing the integration of remote sensing into crop growth modelling and contributes to the broader goal of 
improving yield forecasts for food security under global change. 

Conclusions  

The combina4on of unique experimental data, state-of-the-art remote sensing retrievals, and a diverse set of crop 
models provides a strong founda4on for advancing the science of crop growth predic4on. Beyond methodological 
innova4on, the work highlights the poten4al of collabora4ve ini4a4ves such as hackathons to accelerate the tes4ng and 
adop4on of novel approaches in agricultural modelling.  The findings are relevant not only to potato systems in Western 
Europe but also to broader applica4ons where reliable and scalable yield predic4ons are crucial for agricultural planning 
and policy support. 
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Introduc5on 

Nitrogen (N) is one of the most cri4cal inputs for crop produc4on, directly affec4ng yield poten4al and profitability. Yet, 
inefficiencies in its management lead to reduced produc4vity and environmental externali4es, including nitrate leaching 
and greenhouse gas emissions (Jones et al., 2003). Decision support systems (DSS) and crop growth models (CGMs) such 
as DSSAT and APSIMX simulate genotype × environment × management (G×E×M) interac4ons, providing insights into 
biomass accumula4on, N dynamics, and water use efficiency. Despite their strengths, adop4on remains limited due to 
complex parameteriza4on, data requirements, and steep learning curves. To address these barriers, we developed the 
Virtual Intelligent Simula4on Tool for Agriculture Advisor (VISTAA), a proof-of-concept system integra4ng conversa4onal 
AI with DSSAT (Hoogenboom et al., 2019) simula4ons. VISTAA allows users to pose natural language ques4ons (e.g., 
“What is the best nitrogen dose for my loca4on?”), automa4cally configures model inputs, and returns transparent, 
reproducible recommenda4ons. This approach lowers barriers to model use and demonstrates the poten4al of AI-driven 
interfaces in advancing climate-smart agriculture (Shaikh et al., 2025). 

Materials and Methods 

The VISTAA architecture combines a large language model (LLM) with DSSAT to create an interac4ve decision support 
pipeline. The LLM interprets user queries, extracts essen4al parameters (e.g., loca4on, cul4var, management), and 
guides the dialogue un4l sufficient data is collected for simula4on. For prototyping, Meta’s Llama 3 8B Instruct was 
deployed locally on the University of Florida’s HiPerGator supercomputer using two NVIDIA A100 GPUs, balancing 
accuracy with low latency. Running locally avoided reliance on external APIs and preserved user privacy (Tian et al., 
2025).  
 To scale simula4ons, the backend leverages MPI-based paralleliza4on on HiPerGator, enabling millions of possible 
G×E×M scenarios for a selected environment. This parallel structure accelerates response 4me while maintaining a 
con4nuous connec4on with the user. The backend is built with FastAPI, enabling communica4on between the front end, 
the LLM inference engine (vLLM), and DSSAT. Inputs such as weather, soil profiles, and gene4c coefficients are 
automa4cally assembled. Outputs—including yield, Nitrogen balance, and efficiency indicators—are stored alongside 
user queries in a MongoDB database. The front end, prototyped in Figma and implemented in React, allows users to 
review past conversa4ons, download outputs, and visualize results (Fig 1). 

Results and Discussion 

The prototype successfully demonstrated end-to-end conversa4onal decision support: from user query to DSSAT 
simula4on and result repor4ng. VISTAA generated nitrogen management scenarios, producing recommenda4ons for 
op4mal dose, plan4ng window, and expected yield outcomes (Fig 1). Early tes4ng showed that conversa4onal interfaces 
reduce the technical barrier for non-expert users, who otherwise face challenges in formavng DSSAT inputs. Moreover, 
the audit trail of dialogue provides transparency, enabling users to review parameter choices and replicate simula4ons. 



 

 

 

Parallel execu4on on HiPerGator using MPI further enabled efficient explora4on of millions of possible G×E×M scenarios, 
significantly reducing turnaround 4me while maintaining con4nuous interac4on with the user. Limita4ons include crop 
coverage (currently corn only simulated on CEREZ-Maize model), absence of dynamic integra4on with remote sensing 
datasets, and limited valida4on of automa4cally extracted parameters. Future work will extend coverage to addi4onal 
crops and more calibrated genotypes, building on the current set of G2F lines and commercial hybrids already available 
in the system. 

 
Figure 1. Prototype of the Virtual Intelligent Simulation Tool for Agriculture Advisor (VISTAA). The left panel illustrates the system architecture, where 
a large language model (LLM) interfaces with DSSAT simulations via a FastAPI backend, integrating weather (NASA POWER), soil, and genotype data 
on the HiPerGator supercomputer. The right panel shows the user-facing prototype, enabling conversational interaction through a natural language 
interface and returning nitrogen-efficient management recommendations, including optimal dose, planting window, and expected yield outcomes. 

Conclusions  

VISTAA demonstrates the feasibility of combining LLM-driven natural language interfaces with DSSAT simula4ons to 
deliver accessible, nitrogen-efficient management recommenda4ons. By lowering barriers to model adop4on and 
ensuring reproducibility, this approach represents a step toward AI-enabled, climate-smart agriculture. 
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Introduc5on 
Crop diseases threaten food security by limi4ng quality and supply. While chemical control of bio4c stress is effec4ve, 
overreliance contributes to dependence. To improve efficiency, modeling is a necessary tool to put in the hands of 
stakeholders. The Generic Disease Model (GDM) simulates disease dynamics in cropping systems (Pavan & Fernandes, 
2009). Originally developed as a standalone module, the GDM has been incorporated into the Decision Support System 
for Agrotechnology Transfer (www.DSSAT.net, Hoogenboom et al., 2019). The GDM provides a flexible structure that 
integrates environmental, host, and pathogen variables. Key strengths of the model include integra4on of 
environmental and physiological data, flexibility across cropping systems, and scalability for regional forecas4ng.  

 

Despite its strengths, the GDM s4ll has notable limita4ons. In past research, the model could not previously simulate 
mul4ple diseases concurrently. Another limita4on is that it does not support varying disease cyclicity. These both limit 
analysis of disease interac4ons, which o{en play a role in crop health (Ta4neni et al., 2022). Improvements to input 
flexibility are key because of disease variability. Enhancing the GDM is of paramount importance considering the crops 
studied are both essen4al and vulnerable. This is only compounded by climate change impacts on yields (Pequeno et 
al., 2024). By addressing these gaps, the GDM can evolve into a more powerful tool for sustainable disease 
management. In this study, the GDM is improved in flexibility and acessibility. 

Materials and Methods 

The modifica4ons to the GDM are designed to increase parameterizability to new scenarios, diseases, and crops. 
Mul4ple diseases are now simultaneously simulatable. Input files were converted from a fixed width format to the 
YAML specifica4on which allows comments, op4onal inputs, and improved readability. The use of flexible equa4ons 
allows for adaptability to various disease cases. The model architecture was redesigned to accomodate both 
monocyclic and polycyclic diseases to ensure that the model remains applicable in various cases. Figure 1 shows how 
the seasonal init step has been modified, the disease loop has been created for handling mul4ple infec4ons, and the 
coupling is clearly an input from a configura4on file. 

http://www.dssat.net/


 

 

 

 
Figure 2. GDM process diagram. 

Results and Discussion 

The improved GDM is used to simulate fungal diseases of wheat impac4ng South Brazil. Model predic4ve accuracy is 
measured with RMSE, while flexibility changes are evaluated by user experience. The new version of the GDM is more 
accessible to those without inherent knowledge of phytopathology. Because bio4c stress is so o{en ignored in 
modeling so{ware, these improvements are key to the refinement of yield es4mates. This work can significantly 
impact agricultural produc4vity and stability, further strengthening food security and economic resilience, as well as 
poten4ally yielding evidence for mechanis4c interac4ons that govern the spread and impact of crop diseases.  

Conclusions 

These GDM modifica4ons make results more accessible and widely applicable. The user is exposed to fewer endpoints 
and more safeguards make errors less common. Because of this improved flexibility, it can now be applied to bio4c 
challenges around the world, not just in the scenario studied. These improvements make the GDM a valuable tool to be 
used by crop modelers and phytopathologists alike. 
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Introduc5on 

Heterogeneity of soil proper4es within landscapes cul4vated by smallholders is a common feature in the semi-arid 
regions of Sub-Saharan Africa (Chivenge et al., 2022). Low farmer yields are common due to the low inherent fer4lity of 
the soils, transla4ng not only into variable yields, but also a low response to fer4lizers reported as a disincen4ve for 
inves4ng in fer4lizers (MacCarthy et al., 2025). This situa4on is further compounded by increasing soil degrada4on and 
poor soil management, which handicap sustainable agricultural produc4on. Thus, soil-plant specific management is 
hypothesized as a prerequisite for sustained crop produc4on across these landscapes. 

Materials and Methods 

This study used the Agricultural Produc4on Systems sIMulator (APSIM) to quan4fy the impacts of fer4lity management, 
plan4ng windows, and cul4var maturity dura4on on maize performance Tolon, Savelugu, and Mion districts in Northern 
Ghana. Fer4lity treatments included control (no inputs), sole manure, sole inorganic fer4lizer, and combina4on of 
manure and inorganic fer4lizer. Two maize maturity classes; intermediate (Obatanpa) and extra-early (Abontem) were 
evaluated across staggered plan4ng dates set every two weeks from 15 May to 30 July. Model performance was assessed 
using on-sta4on trials and farm-level experiments in 19 farmer fields within similar environments. Treatment 
preferences were assessed through ques4onnaires on social indicators and produc4vity (grain yield, Interannual 
standard devia4on, coefficient of varia4on (CV) and Yield stability (SYI)) evaluated using mul4ple-year grain yield 
simula4ons (1984–2024), and a score for each indicator was generated. 

Results and Discussion 

For produc4vity, rela4ve to the control, sole manure increased yields by about 154%, while sole inorganic fer4lizer raised 
yields by 140%. The combined applica4on of manure and inorganic fer4lizer provided the largest benefits, increasing 
yields by 238% (Fig. 1) while improving stability indicators. Early sowing increased grain yield by up to 9% and improved 
SYI compared to late sowing in all loca4ons. Intermediate-maturity maize (Obatanpa) was superior to the extra-early 
variety as evident across all fer4lity treatments and loca4ons. Integrated soil fer4lity and early plan4ng increased yields 
between 129% at the fer4le site (Mion) and 296% at the low-fer4lity site (Tolon), with the moderately fer4le site 
(Savelugu) showing intermediate gains (246%). Yield stability was highest at the fer4le site and lowest at the low-fer4lity 
site. In terms of social indicators, the sole use of inorganic fer4lizer was the preferred treatment for the Savelugu and 
Mion sites based on mean scores from the social indicators. 



 

 

 

 

 

Figure 1. Yield gain from different fertility treatments relative to Control 

Conclusions 

These ini4al findings confirm that maize yield and stability are enhanced when both organic and inorganic fer4lizers are 
applied early in the season using intermediate maturity cul4vars across loca4ons, with the largest rela4ve improvements 
recorded in low-fer4lity landscapes. Grain yields will further be used to compute scores for environmental impact 
(nitrogen use efficiency, NUE), and economic returns (cost–benefit). Scores from all pillars will be combined into a 
composite index to assess each treatment’s poten4al for sustainable maize produc4on, providing a holis4c, site-specific, 
climate-smart intensifica4on strategy. 
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Introduc5on 

Accurate yield forecasts at field scale are cri4cal for resilient food systems under climate change (Bracho-Mujica et al., 
2024; Asseng et al., 2015). Purely data-driven machine learning (ML) approaches o{en suffer from limited agricultural 
data (Weersink et al., 2018), while process-based crop models, despite their strong biophysical founda4ons, lack 
generaliza4on and adaptability (Lobell and Asseng, 2017; Wallach et al., 2021). To overcome these limita4ons, we 
propose a hybrid framework that transfers domain knowledge from the process-based DSSAT-Nwheat crop model 
(Jones et al., 2003) into ML algorithms, combining the interpretability of simula4on models with the flexibility of ML. 

 

Materials and Methods 

We developed a knowledge-informed hybrid ML system using >75,000 wheat field trial observa4ons across Germany 
(2005–2021) combined with synthe4c data generated from DSSAT-Nwheat. Synthe4c samples included observed, 
historical, and climate projec4on weather scenarios (CDC, 2018; Jeffrey et al., 2013) to expand the distribu4on space. 
Neural networks and random forests were benchmarked against site-mean yield baselines and pure DSSAT simula4ons.  

 

Results and Discussion 

Neural networks enhanced with DSSAT-simulated features outperformed both data-centric and process-based 
baselines, reducing RMSE by up to 8% compared to pure ML models and >10% compared to site-mean benchmarks. 
The strongest gains originated from synthe4c samples generated under hot and dry climate extremes (Shahhosseini et 
al., 2021; Kallenberg et al., 2023), confirming that diversity rather than size of synthe4c data drives improvements. 
While random forests did not benefit from hybridiza4on, neural networks successfully learned generalized growth 
rules transferable across diverse cul4vars and sites (Maestrini et al., 2022).  

 

Conclusions 

Our results highlight that integra4ng process-based domain knowledge with ML significantly improves wheat yield 
predic4ons, especially under extreme climate condi4ons. The approach demonstrates that hybrid models can enhance 
robustness in data-scarce environments, offering a scalable pathway to strengthen climate adapta4on and food 
security (Asseng et al., 2015; Lobell et al., 2020). Future work should explore genera4ve models to expand fine-grained 
weather and crop datasets, further advancing hybrid learning for agricultural applica4ons. 

 



 

 

 

References 

Journal arBcle 

Asseng S, Ewert F, Martre P, RöJer RP, Lobell DB, Cammarano D, Kimball BA, OJman MJ, Wall GW, White JW, et al. (2015) Rising 
temperatures reduce global wheat producBon. Nat Clim Chang, 5: 143–147. 

Bracho-Mujica G, RöJer RP, Haakana M, Palosuo T, Fronzek S, Asseng S, Yi C, Ewert F, Gaiser T, Kassie B, Paff K (2024) Effects of changes 
in climaBc means, variability, and agro-technologies on future wheat and maize yields at 10 sites across the globe. Agric For 
Meteorol, 346: 109887. 

CDC (2018) CMIP5 climate projecBons. Copernicus Climate Change Service. 

Feng P, Wang B, Liu DL, Waters C, Xiao D, Shi L, Yu Q (2020) Dynamic wheat yield forecasts are improved by a hybrid approach using a 
biophysical model and machine learning technique. Agric For Meteorol, 285: 107922. 

Jeffrey S, Rotstayn L, Collier M, Dravitzki S, Hamalainen C, Moeseneder C, Wong K, Syktus J (2013) Australia’s CMIP5 submission using 
the CSIRO-Mk3.6 model. Aust Meteorol Oceanogr J, 63: 1–13. 

Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt L, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT 
cropping system model. Eur J Agron, 18: 235–265. 

Kallenberg MG, Maestrini B, van Bree R, Ravensbergen P, Pylianidis C, van Evert F, Athanasiadis IN (2023) IntegraBng process-based 
models and machine learning for crop yield predicBon. arXiv preprint, arXiv:2307.13466. 

Karniadakis GE, Kevrekidis IG, Lu L, Perdikaris P, Wang S, Yang L (2021) Physics-informed machine learning. Nat Rev Phys, 3: 422–440. 

Lobell DB, Asseng S (2017) Comparing esBmates of climate change impacts from process-based and staBsBcal crop models. Environ 
Res LeJ, 12: 015001. 

Lobell DB, Azzari G, Burke M, Gourlay S, Jin Z, Kilic T, Murray S (2020) Eyes in the sky, boots on the ground: Assessing satellite- and 
ground-based approaches to crop yield measurement and analysis. Am J Agric Econ, 102: 202–219. 

Maestrini B, Mimic G, van Oort PA, Jindo K, Brdar S, Athanasiadis IN, van Evert FK (2022) Mixing process-based and data-driven 
approaches in yield predicBon. Eur J Agron, 139: 126569. 

Shahhosseini M, Hu G, Huber I, Archontoulis SV (2021) Coupling machine learning and crop modeling improves crop yield predicBon 
in the US Corn Belt. Sci Rep, 11: 1606. 

Wallach D, Palosuo T, Thorburn P, Hochman Z, Gourdain E, Andrianasolo F, Asseng S, Basso B, Buis S, Crout N, et al. (2021) The chaos 
in calibraBng crop models: Lessons learned from a mulB-model calibraBon exercise. Environ Model So}w, 145: 105206. 

Weersink A, Fraser E, Pannell D, Duncan E, Rotz S (2018) OpportuniBes and challenges for big data in agricultural and environmental 
analysis. Annu Rev Resour Econ, 10: 19–37. 



 

 

 

Machine Learning–Enhanced Crop Modeling with Mul/dimensional Data Assimila/on for 
Agricultural Decision Support 
Yang Meijian*1,2, Ruane C. Alexander2, Guarin Jose Rafael2,3, Weatherwax Colleen2,3, Monhollon Luke2,3, Liu Pang-
Wei4,5, Bindlish Rajat4, Kumar Sujay4, Erlingi Jessica4,6, Nipp Terry7, Kozlowski Natalie1,2, Ahmad Shahryar4,8, Geiger 
James4, Yang Zhengwei9, Feng Gary10, and Huang Yanbo10, Archontoulis So`rios11, Huber Isaiah11  

1 Columbia University, Center for Climate Systems Research, 10025, New York, NY, USA, my2824@columbia.edu 

2 NASA Goddard Ins@tute for Space Studies, 10025, New York, NY, USA  
3 Autonomic Integra, 20817, Bethesda, MD, USA 

4 NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 

5 Science Systems and Applica@ons, Inc., Lanham, Maryland, USA 

6 Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA 

7 Texas A&M University, 77840, College Sta@on, TX, USA 

8 Science Applica@ons Interna@onal Corpora@on, McLean, Virginia, USA 

9 US Department of Agriculture, Na@onal Agricultural Sta@s@cs Service, Washington D.C., USA 

10 US Department of Agriculture, Agriculture Research Service, Gene@cs and Sustainable Agricultural Research Unit, Mississippi State, Mississippi, USA 

11 Iowa State University, 50011, Ames, IA, USA 

Keywords: AVAIL, AgLIS, Iowa, Digital Twin, Central Assimila5on Module 

Introduc5on 

Integrated model-data approaches are increasingly cri4cal for precision agricultural decision support. Process-based 
crop models, such as the Decision Support System for Agrotechnology Transfer (DSSAT), provide valuable insights into 
crop growth dynamics and enable yield predic4on under defined environmental and management condi4ons. At the 
same 4me, data assimila4on techniques allow observa4onal data to be incorporated into models, constraining 
uncertainty and reducing model dri{. Despite these advantages, assimila4ng heterogeneous datasets into crop models 
remains a major challenge, par4cularly given the diversity of sources and scales in today’s data-rich era (Montzka et al., 
2012). This research supports the NASA A Virtual Agricultural Innova4ons Laboratory (AVAIL) and Agricultural Land 
Informa4on System (AgLIS) programs, which aims to facilitate the adop4on of Earth observa4on data, Earth system 
models, and agricultural modeling tools to inform real-world farming decisions. 

Materials and Methods 

Ini4al model cul4var parameters and management prac4ces were derived from Iowa field trials involving a corn-soybean 
rota4on with winter rye cover cropping (ChaSerjee et al., 2025). To refine parameter selec4on, crop model outputs were 
integrated with machine learning using the XGBoost model. This approach iden4fied parameter combina4ons that 
minimized Root Mean Squared Error (RMSE) rela4ve to USDA NASS county-level yield averages, and also iden4fied 
parameter combina4ons to maximize simulated yield under the observed weather condi4ons. We developed a Central 
Assimila4on Module within DSSAT which enables the integra4on of mul4dimensional datasets, including remote sensing 
products, field-based observa4ons, and management records, into the modeling framework. In addi4on, DSSAT was 
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coupled with NASA’s Land Informa4on System (LIS) (Kumar et al., 2006) to improve the representa4on of hydrological 
processes. The coupled system was implemented at a fine spa4al resolu4on of 30 meters across the state of Iowa, 
providing the capacity for high-resolu4on simula4ons. 

Results and Discussion 

The integrated DSSAT-CAM model successfully assimilated diverse data streams into the crop model, enhancing the 
realism and adaptability of simula4ons. The 30-meter resolu4on implementa4on enabled spa4ally detailed forecasts of 
crop growth and yield (Figure 1), while also capturing hydrological dynamics relevant to agricultural produc4on. The 
framework demonstrated robust func4onality in handling heterogeneous datasets and effec4vely linking observa4onal 
inputs with process-based simula4ons. This study highlights the poten4al of combining crop modeling with advanced 
data assimila4on and hydrological coupling to improve agricultural forecas4ng. The Central Assimila4on Module extends 
DSSAT’s capability to leverage mul4dimensional data sources, reducing uncertainty and enhancing predic4ve accuracy. 
By integra4ng with NASA’s LIS, the system further strengthens the representa4on of water-related processes that are 
essen4al for understanding crop performance under variable condi4ons.  

 

Figure 1. Spa7al pa?ern of 20-year-mean corn yield in Iowa at 30-meter resolu7on. 

Conclusions 

The integra4on of process-based modeling, data assimila4on, machine learning, and hydrological coupling offers a 
powerful and transferable framework to advance precision agriculture in a changing climate. The successful applica4on 
in Iowa demonstrates the framework’s scalability and relevance for climate adapta4on strategies, with implica4ons for 
agricultural decision support both regionally and globally. 
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Introduc5on  

Smallholder farming systems in sub-Saharan Africa are highly diverse and sensi4ve to climate variability. Western Kenya 
is dominated by maize-based systems that are either monocropped or intercropped.  In prac4ce, maize is o{en 
intercropped with legumes such as beans, groundnuts, or cowpeas to improve soil fer4lity, manage pests, and support 
food security, making resilience assessment highly relevant. While MODIS-derived drought indices are widely applied at 
regional scales (Chakraborty and Sehgal, 2010), coarse resolu4on limits suitability for field-level analysis and climate 
resilience planning. Sen4nel-2 provides an opportunity to capture vegeta4on bio4c and abio4c stresses at field scale 
(Segarra et al., 2020). However, methodologies are required to (i) iden4fy mono- vs inter- crop, and (ii) transform spectral 
vegeta4on indices into high resolu4on stress indicators. Accordingly, we develop and test a framework to compare stress 
dynamics between maize monocrop and maize intercrop, and to iden4fy which system shows greater resilience to 
climate variability. The ongoing work is orien4ng results towards near-real-4me system-specific agri-advisories, through 
collabora4on with iShamba.     

 

Materials and Methods  

We analyzed two seasons (2021, 2023). To make stress es4mates crop-type specific, we produced maize monocrop vs 
intercrop maps through a three-step supervised Random Forest approach: (i) cropland vs natural vegeta4on, (ii) maize 
vs other crops, (iii) monocrop vs intercrop maize. Inputs for the classifica4on methodology contained vegeta4on indices-
based Sen4nel-2 with Sen4nel-1 bands. 

Three vegeta4on indices were used to classify monthly stress during the long rains: (i) Vegeta4on Condi4on Index (VCI), 
which is based on NDVI; (ii) Moisture Condi4on Index (MCI), which is based on NDMI; and (iii) GNDVI, the basic of the 
Greenness Condi4on Index (GCI) for chlorophyll-related stress, sensi4ve to nutrient and pest pressures. A pixel-based 
ensemble (ENS) classifica4on aggregated the three indices into four stress categories (Healthy, Moderate, Severe, 
Extreme) using the majority vote method. Stress dynamics, for the long rainy season, were compared between maize 
monocrop and intercrop using the resul4ng crop-map. An Intercrop Advantage Score (IAS) was then defined and derived 
by summarizing differences in Stress Scores (Δ) and their consistency across months to quan4fy resilience advantage. 
IAS measures the rela4ve benefit, in terms of reduced stress, of intercrop vs monocrop. 

 

Results and Discussion  

The classifica4on methodology achieved adequate overall accuracy OA for 2021 (Step 1: 0.96, Step 2, 0.87, Step 3: 0.77) 
and slightly beSer OA for 2023 (Step 1: 0.97, Step 2: 0.87, Step 3: 0.80). These results show that the used method allows 



 

 

 

the separa4on between maize monocrop and intercrop systems with acceptable reliability considering the small and 
irregular fields (Figure 1). 

 

Figure 1. Comparison of maize monocrop and intercrop classificaBon results for Kisumu and the larger study area in 2021 and 2023. 

The Intercrop Advantage Score (IAS) was assessed (Figure 2), and intercompared with the individual indices, in two study 
areas, with the objec4ve of evalua4ng how intercrop resilience varies with meteorological condi4ons. Across both areas 
and years (2021 and 2023), intercrop consistently outperformed monocrop. In 2021, the advantage was moderate and 
of similar amplitude in both areas, with IAS values across indices generally in the range of 1 to +2. In 2023 the larger area 
showed a markedly stronger intercrop advantage, with IAS values exceeding +5 for several indices and consistency 
reaching 100%. These resilience paSerns may be partly explained by agronomic factors, as intercropping improves 
canopy cover, soil fer4lity, and pest management, while monocrops remain more vulnerable under stress. 

 

Figure 2. Intercrop Advantage Score (IAS) across vegetaBon indices for Kisumu and the larger study area in 2021 and 2023. 

Conclusions  

Our results demonstrate the u4lity of integra4ng Sen4nel-2 and Sen4nel-1 data into a three-step classifica4on to 
generate crop-type maps that enable cropping-system-specific drought stress monitoring. We conclude the talk by 
discussing why and how the benefit of resilience varies with climate regime, and the implica4ons for opera4onal agro-
advisory. These insights highlight the role of intercropping as a climate-smart prac4ce, with poten4al to strengthen 
resilience strategies for smallholder farmers 
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