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Scientific and Methodological Advances in Crop Modelling

Bridging chlorophyll content and vertical nitrogen distribution for accurate canopy photosynthesis simulation

Accurate simulation of canopy photosynthesis is essential for predicting dry matter accumulation and crop yield.
However, most current crop models overlook the effect of vertical distribution of leaf nitrogen and chlorophyll content
on photosynthetic capacity at different canopy layers, resulting in greater uncertainties and weaker mechanistic
explanation. Here, we developed a novel canopy photosynthesis model that establishes a bridge between chlorophyll
content and photosynthetic nitrogen (PN, defned as total leaf nitrogen minus non- photosynthetic nitrogen) across
different canopy heights, and then employs chlorophyll content as a reliable proxy forsimulating photosynthesis. The
model was calibrated and validated using data from fve feld experi-ments under diverse treatments. Results indicate
that leaves at higher canopy positions, receiving more light, contain higher nitrogen content and chlorophyll to support
greater photosynthetic rates. The nitrogen extinction coeffcient (Kn), which characterizes the decline in available of leaf
nitrogen, decreases exponentially with increasing LAI, varying among canopy depths, cultivars and growth stages.
Chlorophyll shows a stronger cor-relation with photosynthesis compared to leaf nitrogen. By capturing these dynamics,
the model enhances the accuracy of photosynthesis prediction by 60%, particularly correcting the overestimation of
canopy photosyn-thesis and dry matter accumulation during post-fowering. These fndings advance the understanding
and modelling of canopy-scale photosynthesis in crop models and provide insights for better integration with
chlorophyll-related remote sensing data.
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Functional-structural plant modelling as a tool for synthetic data generation for Al-driven
applications
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Introduction

Computer vision-based algorithms and sensing platforms are increasingly used in phenotyping research, enabling
automated detection of pests and diseases and the quantification of physiological parameters such as leaf area index,
biomass, and yield (Tanaka et al., 2024). However, these approaches are highly data hungry, and relying solely on ground-
truth data for model training is costly. While data augmentation and self-supervised learning can improve robustness in
object detection, generating biophysiologically meaningful synthetic data for quantitative predictions, such as
physiological traits, remains challenging.

Three-dimensional (3D) sensing technologies including structured light, stereo, time-of-flight cameras, and LiDAR
have become standard tools in plant phenotyping, offering richer canopy structural information than conventional 2D
imaging (Akhtar et al., 2024). This provides opportunities for studying crop competitiveness and complementarity under
complex conditions such as intercropping. However, 3D approaches demand even larger datasets, which increases the
difficulty of applying advanced computer vision models at scale.

To address this challenge, recent studies have used process-based crop models as data generators for training
machine learning algorithms, producing biophysiologically meaningful outputs across diverse environmental and
management scenarios (Maestrini et al., 2022). Extending this concept, functional structural plant models (FSPMs)
simulate 3D crop architecture and light interactions, offering the ability to render synthetic canopy data while retaining
physiological realism (Baker et al., 2023).

This study evaluates the potential and limitations of FSPM-based synthetic data generation for Al-driven applications
by comparing rendered canopy structures with 3D point cloud data collected from faba bean—oat intercropping systems
using depth cameras.

Materials and Methods

A field trial was conducted in 2025 at Flakkebjerg, Aarhus University (55°32' N, 11°39’ E). Faba bean (Vicia faba) and
oat (Avena sativa) were intercropped and sown on 1 April 2025 at densities of 34 plants m2 for faba bean and 90 plants
m~2 for oat. Both species were sown within the same row at 25-cm spacing. Each plot measured 2.5 m x 8 m. Three-
dimensional (3D) point cloud data were collected using a time-of-flight camera (Helios2 Ray, LUCID Vision Labs, Burnaby,
Canada) with a spatial resolution of 0.3 MP (640 x 480 pixels). The camera was positioned approximately 0.8 m above
the canopy, capturing a region of interest of at least 0.5 m x 0.5 m (covering two rows by 0.5 m). This sampling area was
assumed to represent a single training unit for future deep learning applications.

Synthetic 3D canopy data were generated with the Virtual Plant Laboratory (VPL v0.0.6; Alejandro et al., 2025)
implemented in Julia v1.10. Compared with other FSPM platforms (e.g., GrolMP, OpenAlea), VPL allows the complete
modelling workflow (structure definition, simulation, visualization) within one language, benefiting from Julia’s speed
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and flexibility. The simulation of legume—cereal intercropping systems was based on the publicly available script
BASIC_CEREAL_LEGUME (https://git.wur.nl/david.kottelenberg/fspm vpl dk/-/tree/BASIC CEREAL LEGUME) with
minor modifications to the initial spatial arrangement of the two crops. VPL originally outputs canopy structure as
polygon meshes in ply format. To match the format of field data, these meshes were converted into point clouds using
the Python library open3d, assuming the depth camera was positioned above the canopy as in the field experiment.
Only visible points from the mesh surface were sampled to account for occlusion effects within the canopy. Finally,
voxelization was applied to harmonize the spatial resolution of synthetic data with that of the Helios2 Ray camera.

Results and Discussion

Synthetic data from FSPM were visually compared with real 3D point cloud data collected by a depth camera. The
FSPM successfully generated rendered 3D canopy structures as polygon meshes (Fig. 1a), which were subsequently
converted into point cloud data (Fig. 1b). The distinction between broad legume leaves and narrow cereal leaves was
clearly visible in the synthetic data. In contrast, the real point cloud data were affected by canopy occlusion (Fig. 1c), and
occasional dead pixels appeared in the upper canopy layers (Fig. 1d), likely caused by strong solar illumination beyond
the capacity of the depth camera. Moreover, the real 3D data captured smoother surface curvature of leaves, suggesting
that the current FSPM outputs lack some textural realism.

Bridging the gap between synthetic and real data is therefore critical for enabling the effective use of FSPM-based
data in Al applications. One approach is to calibrate FSPM parameters against field observations to better approximate
realistic canopy geometry, particularly in cases where growth balance between legumes and cereals diverges from virtual
representations. Another promising direction is the use of generative adversarial networks (Goodfellow et al., 2020) to
enhance realism by producing synthetic point clouds that mimic field-acquired data.

(d)

(a) (b)

Figure 1. Examples of intercrop canopy data. Synthetic data generated by the functional-structural plant model (FSPM): (a) rendered 3D virtual
intercrops and (b) corresponding synthetic point clouds. Real field data acquired with a depth camera: (c) raw point clouds from an oblique view
and (d) raw point clouds from a top-down view. In subfigures (b—d), the color gradient from grey to black represents the distance from the sensor.

Conclusions

Although this study demonstrates the potential of generating synthetic data using FSPM, a substantial gap remains
between synthetic and real 3D point cloud data. The impact of this gap on the accuracy and robustness of predicting
crop physiological parameters, such as biomass and leaf area index, in intercrops will be examined in future work using
deep learning models.
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Introduction

Potato is one of the most widely grown and most productive crops in the world. Its nutritional and economic value
depend on yield quantity (tonnes ha) and tuber quality (e.g., dry matter concentration and tuber size distribution).
Climate change and legislations aimed at reducing nitrogen (N) pollution are expected to affect potato production
(George et al., 2017; Martinez-Dalmau, 2021). Crop growth modelling plays an important role in identifying adaptations
to these changing conditions, as it provides a means of simulating crop growth in a projected future climate or with
amended management. Although potato crop growth models (CGMs) are useful for decision support by estimating
potential and resource-limited yields (MacKerron and Haverkort, 2023), tuber quality simulations are currently
insufficiently accurate. Tuber quality characteristics are affected by factors such as drought and N availability, and effects
differ between cultivars (Aliche et al., 2019). The current, ongoing project aims to 1) run experiments to generate data
on tuber quality as affected by drought and N availability and 2) develop a module to capture tuber quality development
in the existing CGM World Food Studies (WOFOST).

Materials and Methods

In 2024 and 2025, large-scale field experiments were performed in two locations in the Netherlands to follow tuber yield
and quality development over time. The experimental design included combinations of three irrigation levels, four N
rate levels and 20 cultivars, which differed in maturity type (i.e., early to late). After tuber initiation, plots were harvested
four (2024) or five (2025) times throughout the season. At each harvest moment, fresh yield and DM concentration of
each sample were determined, as well as the size dimensions (i.e., diameter, length, width, height) of each individual
tuber.

Modelling approach

Data acquired in the field experiments suggest that DM concentration and tuber size are affected by water and N
availability throughout the season. These data will be used to develop a tuber quality module that simulates tuber size
and tuber DM concentration. To this end, WOFOST will be used to simulate tuber growth which will be incorporated in
the model structure of WOFOST (Figure 1). WOFOST simulates the potential and water- and nutrient-limited tuber DM
yield based on weather and soil data. The tuber quality module will simulate tuber DM concentration and tuber number
as affected by water and N availability. From tuber DM yield and DM concentration, the fresh matter (FM) yield can be
calculated. From FM yield and tuber number, the average tuber size will be calculated and a size distribution will be
applied to this fresh weight to derive the fresh marketable tuber yield.

P
ICROPM -

FLORENCE ", 2323

<2026,



mailto:ray.hendriks@wur.nl

Crop Modelling for Agricolture

The proposed tuber quality module will be developed with data-driven, empirical insights. It serves as a first step towards
the development of a mechanistic tuber quality module. To evaluate and further improve the module, more detailed
measurements will be done in following field trials in 2026 and 2027.

Weather Module

v

(

Crop Growth Module
Soil Module

TuberQualityModule

Figure 1: Overview of the modelling approach to simulate marketable yield from the output of the World Food Studies (WOFOST) model. The scheme
is simplified and adapted from De Wit et al. (2019). The red box indicates the tuber quality module that is to be added to WOFOST. The grey, dotted
arrows indicate the relations that are to be quantified from the acquired data.
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Introduction

Historically, plant breeders advanced crops through phenotype-based selection and pedigree-based best linear
unbiased prediction (BLUP), but these methods rely on long breeding cycles, extensive phenotyping, and limited ability
to capture Mendelian sampling or linkage disequilibrium. The decline in genotyping costs has shifted this balance,
enabling genome-wide marker profiling at scale and creating an opportunity to accelerate breeding through genomic
prediction (GP). Since its introduction, GP has allowed earlier and more accurate selection, with gBLUP becoming a
widely adopted implementation that uses genomic rather than pedigree-derived relationships to improve predictive
ability. While gBLUP has consistently outperformed pedigree-based prediction across many crops, it does not model
genotype x environment interactions, thus limiting accuracy when genotypes are evaluated in new production
conditions. Extensions such as multi-environment and reaction-norm models incorporate environmental covariates to
capture genotype-specific plasticity yet remain fundamentally statistical and constrained by the information content of
the data. To overcome these limits, mechanistic crop growth models (CGMs) explicitly represent physiological processes
such as phenology and biomass partitioning, allowing in silico evaluation of genotype performance under diverse
climatic and management scenarios. Integrating CGMs with GP (CGM-WGP) links marker effects to physiological
parameters, embedding biological knowledge into prediction and enabling extrapolation to novel environments with
improved interpretability (Technow et al., 2015; Messina et al., 2018, 2022). While ensemble of models is emerging as
a method to improve predictive accuracy (Messina et al., 2025; Cooper et al., 2025), in this study, we first compare
gBLUP, gBLUP with environmental covariates, and CGM-WGP prediction methodology to evaluate their predictive ability
for flowering time in raspberry, with particular focus on the most challenging scenario: predicting new genotypes in new
environments.

Materials and Methods

A multi-environment dataset from a private raspberry (Rubus idaeus) breeding program was used, consisting of
1,840 records for 453 genotypes evaluated across 19 environments (location X years) from 2021-2024. The trait of
interest, flowering duration, was defined as the number of days from planting to first harvest minus 35 days, with
genotypic means (BLUEs) estimated separately within environments. Given the highly unbalanced nature of the dataset,
only genotypes with observations in at least 2 environments and complete metadata, including planting date and
weather metadata, were retained. Genomic data consisted of genome-wide SNP markers. Daily weather data included
mean, maximum and minimum air temperature, relative humidity, vapor pressure deficit, and photoperiod. Three
genomic prediction approaches were evaluated: (i) baseline gBLUP, (ii) gBLUP with environmental covariates, and (iii) a
linear crop CGM-WGP framework implemented with the Ensemble Smoother with Multiple Data Assimilation algorithm
(ES-MDA). Predictive ability was assessed under four robust breeding-relevant cross-validation (CV) scenarios, where
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each scenario was implemented as 10 replicates of 5-fold cross-validation (CV2 - known genetics, known environments;
CV1 — new genetics, known environment; CVO — known genetics, new environments; CV00 — new genetics, new
environments) using correlations between observed and predicted flowering time.

Results and Discussion

In CV2, the predictive ability of gBLUP models was exceptionally high (0.920-0.929), while the predicitve ability
of CGM-WGP was lower (0.844), a decrease of 8.26%. In CV1, accuracies remained high for gBLUP apporaches (0.903—
0.909) but lower for CGM-WGP (0.832), showing that statistical approaches excel when both genotypes and
environments are represented in the training set. In CV0, however, gBLUP predicitve ability dropped substantially (0.527—
0.546), whereas the CGM-WGP approach achieved an accuracy of 0.703, a 31% increase relative to the baseline gBLUP
model. The clearest separation emerged in CV00, where gBLUP models predictive ability fell to 0.295-0.350 while CGM-
WGP reached a median predictive ability of 0.577, more than doubling predictive ability of any gBLUP-based approaches
(+65% gain). These results demonstrate a consistent pattern: gBLUP excels in interpolation (CV2, CV1) but loses power
as novelty of the prediction scenario increases (CVO, CV00). By contrast, CGM-WGP maintains accuracy in the face of
novel genetics and environments, leveraging physiological information to extrapolate beyond the observed data. The
particularly strong CV0O performance emphasizes its breeding relevance, since predicting new genotypes in untested
environments is the central challenge in forward-looking selection. Overall, these findings highlight the promise of
physiology-based models as a pathway toward more reliable genomic prediction under climate change and expanding
target populations of environments. Future research should focus on optimizing the model collective within the diversity
theorem framework to maximize prediction accuracy (Messina et al., 2025).
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Figure 1. Predictive ability of five genomic prediction model types across 50 cross-validation analyses. Predictions were evaluated under four
breeding scenarios: CV2 — known genotypes, known environments; CV1 — new genotypes, known environments; CV0O — known genotypes, new
environments; and CV0O0 — new genotypes, new environments. Boxes show the interquartile range (25th—75th percentile), with the median
indicated by the central line. Whiskers extend to +1.5 x IQR, and points denote correlations outside this range (outliers).
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Synthetic data augmentation for enhanced in-season crop phenology prediction

Keywords: Phenology, Modeling, Machine Learning, Statistical Analysis, Data Augmentation

Accurate crop phenology modeling plays a vital role in modern agriculture by enabling farmers to manage risks and
optimize productivity. Since 2021, BASF’s Digital Farming business unit has adopted machine learning (ML) techniques
to enhance the scalability and efficiency of phenology model deployment. However, ML models require large volumes
of high-quality data, and data gaps—often caused by inconsistent sampling and environmental biases—pose significant
challenges to model robustness.

This paper introduces a novel data augmentation strategy to synthetically generate phenology data for German winter
wheat, addressing data gaps caused by shifts in planting windows. We analyzed historical phenology records to identify
key features, revealing a strong correlation between planting dates (expressed as day-of-year) and the number of days
after planting (DAP) required to reach specific growth stages. To account for interannual weather variability, we
performed cluster analysis to identify historical seasons with winter conditions similar to those of the 2024-2025
season. The 2020-2021 season emerged as the most comparable and was used to build linear regression models
predicting DAPs for each growth stage based on planting date.

Using these models, we generated synthetic phenology data to fill gaps caused by the late planting in the 2024-2025
season—an environmental condition underrepresented in the existing training data. Incorporating this augmented
dataset into the training pipeline significantly improved in-season prediction accuracy. The enhanced model achieved a
10% increase in 5-day-error accuracy, demonstrating the effectiveness of synthetic data in bridging phenological data
gaps and improving model performance.

Figure 1: Days required to reach the same growth stage decrease with delayed planting. This plot also demonstrates
accelerated crop development of 2024/2025 season due to late planting and unique wintertime weather conditions.
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Introduction

The global population is expected to exceed 9 billion by 2050, requiring a 60—100% increase in food production (FAO,
2021; Long, 2025). Agronomic advances to meet rising food demand have already increased agricultural water use, while
freshwater resources remain stagnant and, in many cases, are declining (Rodell et al., 2018). Therefore, future yield gains
must be pursued in parallel with improvements in crop water-use efficiency (WUE). A recent modelling study for C4
maize leaves showed that reducing stomatal conductance (gs) in C4 leaves can improve WUE without compromising
photosynthesis (Srivastava et al., 2024). However, the analyses remain limited to the leaf scale and do not capture the
implications on canopy growth and yield since plant-scale processes are required to resolve these interactions. Yet,
current crop models offer only partial solutions: CROPGRO includes stomatal regulation but is restricted to C3 legume
crops, and CERES-Maize lacks a biochemical photosynthesis module. While an APSIM modelling framework by Wu et al.
2019 allows modelling for both C3 and C4 crops along with a biochemical photosynthesis module, it lacks consideration
of leaf energy balance (assumes leaf temperature (Tiesf) = air temperature (Tair)). This omission is critical because gs
reduction lowers transpiration and increases Tar, altering enzyme kinetics, canopy energy balance, and potentially crop
growth (Srivastava et al., 2024). To address this gap, we present a new cross-scale framework that couples the DSSAT
CERES-Maize model with vLeaf, a process-based leaf model. Within this framework, a two-leaf (sunlit-shaded)
representation of the canopy is implemented, capturing canopy scale fluxes with reasonable accuracy and enabling two-
way interactions between DSSAT and vLeaf. This integration allows biochemical processes simulated at the leaf scale,
such as including photosynthesis, stomatal conductance, boundary layer conductance, and energy balance, to
dynamically influence crop growth and development, while the crop state simulated in DSSAT constrains diurnal leaf-
level processes.

Materials and Methods
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Figure 1. Coupling DSSAT CERES-Maize with vLeaf to integrate leaf-scale gas exchange and energy balance with crop growth.
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We use an open-access Python library, pyDSSATTools, to run a modified DSSAT (v4.8) executable that integrates the
DSSAT crop growth model with the vLeaf (Figure 1). In addition to incorporating vLeaf outputs into DSSAT simulations,
the framework also stores them in a separate output file, allowing deeper insights into crop-scale feedbacks. CERES-
Maize (Jones & Kiniry, 1986) simulated crop state variables in DSSAT, including leaf area index (LAl), soil water, nitrogen
status, and phenology. The vLeaf module then computes hourly assimilation and transpiration rates for sunlit and shaded
leaf area based on their respective absorbed radiation (Spitters, 1986; Campbell and Norman, 1998). The leaf model
vLeaf (Srivastava et al., 2024) incorporates four coupled submodels: (i) a biochemical model of C4 photosynthesis (von
Caemmerer, 2000), (ii) a modified Ball-Berry stomatal conductance model (Leuning, 1990), (iii) a leaf boundary-layer
conductance model (Nikolov et al., 1995), and (iv) an energy balance solver for steady-state Tiesr (Nikolov et al., 1995).
The two-way coupling works by having vLeaf simulate the potential diurnal carbon uptake and transpiration for sunlit
and shaded leaves, with DSSAT root water uptake constraining the transpiration demand. vLeaf is then rerun with this
water stress, updating leaf energy balance, Tiesf, gs, and net assimilation (Anet), Which is passed back to DSSAT to compute
biomass accumulation and update plant status for the next day.

Results and Discussion

Simulations were conducted to evaluate the consequences of neglecting leaf energy balance under contrasting
temperature conditions. Simulations under cooler (-3 °C) and warmer (+3 °C) environmental conditions, relative to the
US Midwest, revealed substantial seasonal differences in carbon gain and water use predicted by the vLeaf model.
Omitting energy balance (Tiear = Tair) results in the cumulative carbon gain being underestimated by 10% in cooler
conditions and 1% in warmer conditions. However, a much greater effect is observed on crop water usage. Cooler
environments show a 29% underestimation in water demand, while warmer conditions show a 6% overestimation of
transpiration water demand. Such biases have important implications for seasonal predictions and testing the WUE gains
in hybrid crops. For instance, an underestimation of water use may mask the severity of drought stress or the true costs
of water-saving strategies, and an underestimation of yield may misguide breeding or management decisions aimed at
improving crop performance. This is particularly critical when evaluating climate-resilient strategies such as stomatal
manipulation, where reduced gs improves WUE at the leaf scale but simultaneously increases Tiear, Which can alter
physical canopy processes and plant biochemical processes. Neglecting this feedback could lead to misleading
conclusions about the benefits of trait-based crop improvement. By explicitly resolving energy balance, the framework
will capture both direct and indirect effects of any physiological modification, providing a more reliable basis for
assessing WUE and yield outcomes under diverse environmental conditions.

Conclusions

The DSSAT-vLeaf framework highlights the importance of explicitly representing leaf energy balance in cross-scale crop
modeling. Neglecting this process introduces significant errors in carbon gain and water use. Integrating energy balance
provides a more reliable foundation for evaluating WUE and yield-improving strategies.
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Introduction

Root hydraulic conductance (Lp) relates water flow with the decrease in water potential from the soil to the leaf.
Stomatal conductance models based on water potential are essential parts of models of the soil-plant-atmosphere
continuum (SPAC) (Garcia-Tejera et al., 2017). Recent advances in the measurement of tree water potential using
microtensiometers (Pagay et al. 2014) allowed quantifying the diurnal evolution of root conductance in young olive
trees (Villalobos et al., 2025).

Here, we report root hydraulic conductance data in irrigated adult olive trees in Cordoba (Spain) obtained with
measurements of sap flow and sapwood water potential.

Materials and Methods

The experiment was performed in a drip-irrigated olive orchard at the Instituto de Agricultura Sostenible of Cordoba
(Spain) during 2024. Sap flow was measured with the Compensated Heat Pulse- Average Gradient (CHP-AG) method
(Testi et al. 2009). Sapwood water potential was determined with microtensiometers (FloraPulse Co., Davis, CA, USA).
Measurements were performed in 5 trees, though here we will only present data from a single tree of cultivar “Picual”.

Results and Discussion

The time course of sap flow, sapwood water potential at the trunk base, and calculated resistance were similar to those
shown in Fig. 1 for a tree of cultivar “Picual” for two dates - spring and full summer - with clear sky. Some patterns are
common for the two curves: maximum sap flow peaks during 2-3 hours after noon, minimum water potential occurs
later than that, hydraulic conductance is maximum in the early morning and decreases during the daytime, being very
low at night. This day/night difference was also found by Villalobos et al. (2025) with young trees. In May, we find a lower
sap flow, higher potential and higher hydraulic conductance. The decrease in conductance in summer is the result of
irrigation not meeting the water requirement, which is also shown by the lower pre-dawn water potential (Fig. 1).

Conclusions

Hydraulic conductance varied during the daytime and was very low at night. Daytime values of conductance decreased
during the summer.
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Figure 1. Time course of sap flow, sapwood water potential and hydraulic conductance of an olive tree cv. “Picual” on 2 May (left)and 28 August
(right) 2024.
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Introduction

The explicit representation of soil organic matter (SOM) fractions in crop models is essential to capture their contrasting
stability, turnover rates, and sensitivity to management and soil texture. Traditional three-pool SOM structures provide
only a simplified representation and do not explicitly separate particulate organic matter (POM), linked to short-term
residue turnover, from mineral-associated organic matter (MAOM), which represents long-term stabilization. This
distinction is particularly relevant when assessing management effects, since tillage, residue retention, and soil texture
strongly modulate the balance between POM and MAOM. Therefore, testing a mechanistic POM—MAOM module
provides an opportunity to improve the process-based representation of SOM dynamics and their links with crop
performance.

Materials and Methods

We extended the process-based crop model ARMOSA (Perego et al., 2013) with a new module simulating POM and
MAOM according to the Microbial Efficiency-Matrix Stabilization (MEMS) framework. The module links residue
decomposition, microbial turnover, and stabilization/desorption processes. The evaluation used long-term data from
two sites in northern Italy with contrasting textures: Landriano (silty loam) and Piacenza (silty clay). At Landriano, three
management systems were compared (conventional tillage, semi-conservative, and no-till), while Piacenza included two
(conventional and no-till). The Landriano trial, started in 2023, follows a biennial silage rotation of maize, winter barley,
and soybean, with cover crops under no-till. The Piacenza trial, established in 2013, adopts a four-year rotation of double
maize, wheat, and soybean, also with cover crops under no-till. Observed SOC fractions were used to evaluate model
performance for POM and MAOM, while ancillary crop variables (LAI, aboveground biomass, yield) were simulated to
ensure consistency of the crop—soil system. For independent testing, calibration used conventional and no-till in
Landriano and two thirds of the years in Piacenza; validation used the semi-conservative system in Landriano and the
remaining years in Piacenza. Calibration followed a stepwise approach, combining automatic optimization with trial-and-
error refinements, starting from soil water and crop variables and extending to soil mineral N and SOC fractions.

Results and Discussion

Results showed that the model reproduced the main temporal patterns of both SOM fractions and crop growth, with
the best performance at Landriano (Figure 1). Model—data comparison at Landriano showed variable agreement across
fractions, with high d-index values for MIC (0.62—0.98) and SOCtot (0.71-0.88), moderate agreement for MAOM (0.61—
0.66), and lower performance for POM and DOC (0.44-0.49 and 0.44-0.82, respectively). The weaker agreement for
Fzee
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POM and DOC reflects their intrinsically higher spatial and temporal variability, which makes these fractions more
difficult to capture consistently in both field measurements and simulations. These findings demonstrate the capacity of
the new ARMOSA module to capture management and texture effects on SOM fraction dynamics while maintaining
robust performance on crop variables, thus strengthening confidence in its process-based representation.
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Figure 1. SOC pools of the soil layer 0 to 30 cm in calibration (conventional and no till) and validation (semi-conservative) datasets of the Landriano
site

Table 1. Fitting indices for SOC and SOC pools in calibration (conventional and no till) and validation (semi-conservative) datasets of the Landriano

site

"component" "group" "RRMSE" | "d"
"SOC[tot]" "calibration" 3.84 0.71
"SOC[tot]" "validation" 3.51 0.88
"Mic" "calibration" 11.59 0.62
"Mic" "validation" 2.05 0.98
"DoC" "calibration" 12.44 0.44
"DoC" "validation" 4.63 0.82
"poC" "calibration” 19.41 0.44
"poC" "validation" 18.94 0.49
"MAOC" "calibration" 4.21 0.61
"MAOC" "validation" 5.45 0.66
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Conclusions

The explicit representation of POM and MAOM in crop models represents a step forward compared to traditional three-
pool SOM structures, providing a more mechanistic understanding of SOM stabilization processes and their responses
to management and soil texture.
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Introduction

Dry beans (Phaseolus vulgaris L.) are the second most important food legume worldwide, after soybeans, contributing
significantly to human diets due to their high protein content (Takeoka et al., 1997). Despite this global importance, dry
beans remain a relatively new crop in Germany, where legumes account for only 1.8% of arable land. In 2021, the average
per capita bean consumption was 2.2 kg, with kidney beans being the most consumed type in the country. The gap
between consumption and domestic production reflects Germany’s strong dependence on imported protein crops, with
roughly one-quarter of its feed protein being imported (BLE, 2020). Expanding bean cultivation in Germany is therefore
strategically crucial for reducing reliance on imports, enhancing local food and plant-based protein security, while
contributing to climate mitigation goals. However, bean cultivation has not been widely tested under German conditions,
and no official genotype recommendations exist. Process-based crop models such as DSSAT CROPGRO-Drybean provide
valuable tools for evaluating genotypexenvironmentxmanagement interactions. Originally developed and validated in
tropical and subtropical regions (Hoogenboom et al., 1994; Melo et al., 2011), CROPGRO-Drybean has been successfully
calibrated for diverse environments, yet its application in temperate Europe remains limited. Simulating kidney bean
growth under Southern German conditions offers an opportunity to assess adaptation potential and generate insights
for management strategies that support sustainable crop diversification. Due to the comparatively limited research
investment in minor crops such as kidney bean, conducting extensive multi-site and multi-year field trials often proves
unfeasible. Crop models are effective tools for testing a wide range of hypothetical scenarios and management options,
thereby obviating the need for costly and time-consuming field experiments. The objective of this study was to calibrate
and test the CROPGRO-Drybean model for kidney bean under Southern German conditions.

Materials and Methods

The DSSAT CROPGRO-Drybean model (version 4.8.5; Hoogenboom et al., 2024) was used in this study. The experimental
site was lhinger Hof research station of the University of Hohenheim, Southern Germany (48°44' N, 8°55' E, 475 m a.s.l.).
Two kidney bean cultivars, Red Kidney and Canadian Wonder, supplied by MyLocalFarm Company (Germany), were
grown in a field experiment sown on 16 May 2025. The experiment included measurements of phenological
development stages, biomass accumulation, and final grain yield. These observations formed the basis for estimating
cultivar- and ecotype-specific genetic coefficients required by CROPGRO-Drybean. Soil profile characteristics were
determined from site-specific analyses, and crop management information was derived from experimental records.
Together with daily weather data collected at the station, these parameters were used as model inputs. As a starting
point for calibration, the DSSAT default cultivar Canadian Wonder (1B0014) was used. The calibration process involved
iterative adjustment of ecotype followed by cultivar coefficients to achieve good agreement between simulated and
observed data for key traits, including flowering, first pod day, and physiological maturity (phenology-related
coefficients), in-season biomass, and final yield (growth-related coefficients).
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Results and Discussion

The calibrated DSSAT CROPGRO-Drybean model showed overall good agreement between simulated and observed
values for both kidney bean cultivars (Table 1) under Southern German conditions, based on one year of data. Simulated
anthesis dates (ADAT) were within 2—10 days of observed values, with a slight tendency to underestimate anthesis for
Canadian Wonder. The first pod (PD1T) and physiological maturity date (MDAT) were closely matched between
simulations and observations, indicating that the model successfully represents early reproductive development. Grain
yield was reasonably predicted, with Red Kidney showing a simulated yield slightly higher than the observed yield. At
the same time, Canadian Wonder was slightly overestimated by the model, suggesting that further calibration may be
required to account for cultivar-specific responses under local conditions.

Table 1. Comparison of simulated (Sim.) and observed (Obs.) phenological dates and grain yield for two kidney bean cultivars grown at lhinger Hof,
Southern Germany, in 2025. ADAT = anthesis date; PD1T = first pod date; MDAT = physiological maturity date. Yield is expressed in kg DM ha™".

Cultivar IADAT PD1T MDAT Grain Yield

Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs.
Canadian Wonder 46 56 55 65 96 102 1385 926
Red Kidney 46 48 55 58 96 101 1344 1296

Simulated leaf area index closely matched observed values, with peak achieved around 45—-85 days after sowing (DAS)
for both cultivars (Fig. 1a). For leaf weight, the model accurately reproduced the growth trajectories of both cultivars,
with rapid biomass accumulation beginning around 30 DAS and peaking near 85 DAS (Fig. 1b). The slightly lower d-
statistic for these two traits may reflect greater variability in canopy development. Nonetheless, both cultivars showed
similar growth patterns, suggesting shared responses to environmental conditions. Thousand-grain weight simulations
were highly accurate, with the model capturing the timing and magnitude of grain filling and maturity (Fig. 1c). The high
d-statistics demonstrate reliable model performance in simulating final yield outcomes.
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Figure 1. Simulated (sim.) and observed (obs.) growth dynamics of two kidney bean cultivars, grown at the Ihinger Hof research station, Germany,

and modeled using DSSAT CROPGRO-Drybean (v4.8.5). Panels show: (a) Leaf area index, (b) leaf weight, and (c) thousand-grain weight over days

after sowing (DAS). Model calibration was based on field measurements taken during the 2025 growing season. Final d-statistics are reported for
each cultivar and trait, indicating model fit.

Conclusions

Preliminary results of CROPGRO-Drybean for the Canadian Wonder and Red Kidney cultivars based on one year of data

underscore the model’s ability to simulate growth and yield dynamics of kidney beans under Central European
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conditions. Key phenological events and patterns of biomass accumulation and partitioning were consistent with field
observations, apart from stem and pod. Additional data will be used for further testing of the model with respect to the
weather-related seasonality factor. Overall, these results demonstrate that the model provides a reliable baseline for

simulating kidney bean growth in Germany and could potentially be used to optimize management strategies in future
studies.
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Introduction

Nitrogen (N) deficiency leads to a marked reduction in the photosynthetic capacity of crops since Rubisco and the light-
harvesting proteins involved in photosynthesis account for 60% of the N content in leaves (Sadras et al., 2024).

Diaz-Espejo et al. (2006) modeled photosynthesis in olive leaves under drought conditions. The results showed that the
reduction in photosynthesis capacity was strongly related to the decrease in N content per unit leaf area, rather than to
other factors such as water deficit.

Materials and Methods

N concentrations were measured in an experimental olive orchard under ample water and fertilizer supply including
different olive varieties (‘Picual’, ‘Arbequina’, ‘Hojiblanca’, ‘Arbosana’, ‘Cornicabra’, ‘Empeltre’, ‘Frantoio’ and
‘Cobrangosa’). The resulting values were used to estimate maximum carboxylation activity of Rubisco under saturating
conditions of CO; and ribulose biphosphate (V¢ max) and the maximum electron transport rate without light limitations
(Jmax) With the equations proposed by Diaz-Espejo et al. (2006).These two parameters are included in the photosynthesis-
stomatal conductance submodel used in OliveCan (Lépez-Bernal et al., 2018), a process-based model of olive orchards.
Assuming no genotype effects on the remaining parameters of the photosynthesis-conductance submodel, a simulation
experiment was performed to evaluate the effects of cultivar variability in V¢max and Jmax on the simulated seasonal
estimates of gross photosynthesis for a hedgerow olive orchard.

Results and Discussion

N concentration in olive leaves ranged from 3.61 g N m (‘Cornicabra’) to 4.54 g N m (‘Arbequina’), with statistical
differences between cultivars. Such values resulted in extreme values of V max and Jmax of 83.7-95.0 umol m2 s and 137-
168 umol m? s, respectively. Simulation results showed average seasonal estimates of gross photosynthesis ranging
from 4322 + 487 g glucose equivalents m2 y?! (‘Cobrancosa’) to 4174 + 414 g glucose equivalents m2 y! (‘Arbequina’)
(Table 1). This implies that the measured differences in N, between cultivars led to 3% variations in seasonal gross
photosynthesis. Although the results of this exploratory analysis must be taken with caution, they highlight that future
studies should explore in greater detail the effect of N availability on photosynthetic parameters and the interaction
between cultivars and N availability in olive trees.

Table 1. Annual gross photosynthesis simulated with the OliveCan model using Vc,max and Jmax values derived for each cultivar from leaf N
concentrations

‘Arbequina’ ‘Arbosana’ ‘Cobrangosa’ ‘Cornicabra’ ‘Empeltre’ ‘Frantoio’ ‘Hojiblanca’ ‘Picual’
YEAR g m-2year?! g m-2year? g m-2year?! g m-2year?! g m-2year? g m-2year? g m-2year? g m-2year?
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Average 4174 4232 4322 4222 4319 4282 4297 4296
Std. Dev. 414 466 487 466 486 479 482 481
Conclusions

Differences in leaf N concentration were found among the studied varieties. According to the simulations,
photosynthesis rates could differ among cultivars by up to 3% due to the variability in leaf N concentration alone.
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Introduction

Semi-arid croplands are expanding, and drying trends are intensifying, increasing the frequency and severity of water
stress during critical stages of crop development (Huang et al., 2016). Many process-based crop models underperform
in these environments. By simplifying stress interactions, canopy dynamics, and field heterogeneity, they underestimate
drought-induced yield losses and generate uncertain predictions in water-limited systems (Webber et al., 2025). For
broader use beyond research calibration, models must remain transparent, parsimonious, and operationally deployable.
Building on the framework of Soltani and Sinclair (2011), we developed a mechanistic chickpea model tailored for semi-
arid systems. Its core innovation is a two-threshold soil-water modifier that regulates leaf area development: above an
upper threshold expansion proceeds, between thresholds it is progressively constrained, and below a lower threshold
expansion ceases with drought-induced senescence. This physiologically interpretable mechanism links soil water status
to canopy growth, radiation capture, and yield formation. The model is released as open-source code, ensuring
reproducibility, extensibility, and operational use, in line with principles outlined by Wallach et al. (2018).

Materials and Methods

Model calibration was conducted using data from field experiments carried out in a semi-arid region of southern Israel
(31.333° N, 34.664° E) during 2019-2021. The trials were arranged as randomized complete block designs with six
replicates. All plots received sprinkler irrigation during the vegetative phase, followed by differential drip irrigation
ranging from 0 to 140% of weekly reference evapotranspiration (ET,). Physiological data (phenology, leaf area index,
above-ground biomass, and grain yield) were used to parameterize phenological thresholds, leaf area parameters, the
two-threshold soil-water modifier, radiation use efficiency, and maximum harvest index. For validation, the model was
applied to 21 commercial chickpea fields cultivated between 2022 and 2025 in the same semi-arid region, using field-
specific information on sowing, harvest, irrigation, and yield to test model robustness across contrasting water regimes.
Model performance was evaluated using four statistical indicators: the coefficient of determination (R?) which measures
the proportion of observed yield variance explained by the model; the Root Mean Square Error (RMSE, t ha), which
quantifies the average magnitude of prediction error; the normalized RMSE (nRMSE, %), which expresses RMSE relative
to the observed mean yield to allow comparison across datasets; and bias (t ha?), which indicates systematic over- or
underestimation by the model.
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Results and Discussion

Calibration on experimental plots (2019-2021) produced R? = 0.68 and nRMSE = 22.3% for grain yield, while validation
on 21 commercial fields (2022-2025) reached R? = 0.78 and nRMSE = 18.7% (Figure 1). These consistent results across
experimental and farmer-managed conditions highlight the robustness of the model, with performance comparable to
benchmarks reported by Soltani and Sinclair (2011). Yield variation was primarily explained by the two-threshold LAl
modifier, underscoring canopy development as the dominant driver of water-stress responses. The model effectively
differentiated yield under rainfed and deficit irrigation, but its discriminating power declined once irrigation exceeded
100% of weekly ET,, a limitation also evident in high-yield commercial fields.

Calibration (2019-2021) Validation {(2022-2025)
R2=0.68 .~ |[R®=0.76
RMSE = 0.91 t ha"! " |RMSE=0.78tha"
nRMSE = 22.3% nRMSE = 18.7%
Bias = 0.06 t ha™" Bias = 0.49 t ha"1
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Observed yield (t ha™1)
Figure 1. Simulated vs. observed chickpea yield for calibration (left, 2019-2021) and validation (right, 2022—-2025). Calibration points are grouped by
weekly irrigation as a percentage of reference evapotranspiration (ETo, 0, 50, 75, 100, 125, 140%), averaged across blocks, giving 17 treatment-year
combinations (five levels in 2019; six in 2020; six in 2021). Validation includes 21 commercial chickpea fields, each represented as an individual point.
The dashed line indicates the 1:1 reference. Performance metrics (R2, RMSE [t ha™"], nRMSE [%)], bias [t ha™]) are reported per panel.

Conclusions

This study shows that yield variability in semi-arid chickpea systems can be captured by a simple, physiologically based
canopy modifier linking soil water status to leaf area development. By targeting a key driver of yield formation, the model
demonstrated robust performance across both experimental trials and commercial fields. Its open-source R
implementation ensures transparency, reproducibility, and adaptability, supporting use in research as well as operational
decision-making under water-limited conditions. More broadly, the results highlight the value of parsimonious
mechanistic approaches for advancing crop modeling and strengthening the resilience of semi-arid agriculture.
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Introduction

The reliability of crop models is often threatened by problems dealing with the robustness of parameterizations. Ideally,
model parameters should only reflect morphological and physiological characteristics of specific genotypes. However, in
most cases, the parameterization is hindered by unfavorable relationships between the number of observations and the
number of parameters to be calibrated. This may lead to include, in parameter values, site-specific factors (e.g., weather
conditions) which can compromise the model capability to simulate growth and development under conditions different
from those explored during the calibration.

Good practices suggest running sensitivity analysis, measuring as many parameters as possible and calibrating only a
number of parameters (for which measurements are unavailable) which should be small compared to the number of
observations (possibly on different state variables) available to estimate the objective function. However, these
guidelines are far from being regularly adopted, also because of the time needed to collect measurements, and of cost
and usability of available instruments.

This study aims at presenting a mobile application designed to enable an efficient and rapid collection of quantitative
data on both parameters and rate/state variables relevant for crop model parameterization. In the current version, the
app estimates leaf area index (LAI), extinction coefficient for solar radiation (k), plant nitrogen content (PNC), nitrogen
nutrition index (NNI), and stomatal conductance (gs).

Scientific background

The method for LAl makes use of the device accelerometer to capture live-preview camera frames at 57.5° zenith angle
while the user is rotating the device along its main axis. Frames are then automatically segmented to identify the
percentage of “sky pixels”, i.e., the gap fraction, which is converted into LAl values using the light transmittance model
described by Baret et al. (2010). PNC is estimated from leaf greenness, in turn quantified according to Karcher and
Richardson (2003). A dedicated reference panel is used during image acquisition to flatten spectral reflectance, thus
normalizing the settings of the device exposure meter. PNC is used — together with critical N concentration (Ncrit)
(derived from LAl according to Confalonieri et al. (2011)) — to estimate NNI, as the PNC to Ncrit ratio. The application
enables 3D scanning of leaf surfaces using the device accelerometer and magnetometer. The resulting leaf angle
distribution is used (i) to derive k as a function of the parameter x of the Campbell’s ellipsoidal distribution, and (ii) to
estimate g, from changes in leaf architecture (Paleari et al., 2024; Rusconi et al., 2025).
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The mobile app

The mobile app (Fig. 1), currently available for Android devices, is designed for data collection in field experiments, with
a user-friendly interface, an integrated user guide and the possibility to tag and store data. Measurements referring to
the different quantities are georeferenced using the device GPS, and data can be exported in both text and shapefile
formats for further analysis and processing.

closed stomata

Figure 1. The mobile application scheme illustrating parameters (blue), rate (purple) and state (orange) variables of interest for model
parameterization.

Conclusions

The proposed mobile application provides an innovative, low-cost, and portable solution for in-field data collection of
key crop parameters and rate/state variables, thus enhancing the robustness of model parameterizations and supporting
more reliable applications of crop models across different contexts.
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Introduction

The Farquhar-von Caemmerer—Berry (FVCB) model describes leaf photosynthesis by defining key biochemical
parameters that determine carbon assimilation limited by Rubisco activity, electron transport, or triose phosphate
utilization. Cropbox is a Julia-based declarative framework for developing process-based crop models (Yun & Kim, 2023).
Using this framework, we implemented a coupled leaf gas-exchange model commonly used in crop models (Yun et al.,
2020). While the framework facilitates optimization and integration of physiological sub-models, strong feedback among
coupled components still leads to high computational costs under high-resolution input features.

To address this, we developed a machine learning (ML) surrogate trained on Cropbox outputs to reproduce the coupled
model’s accuracy with greatly improved efficiency. Previous canopy-scale studies have used hybrid models combining
FvCB parameters with artificial neural networks (ANNs) for generalization (Kaneko et al., 2022). Other recent studies
have applied ML approaches such as Random Forest, XGBoost, and ANNs to address re-parameterization challenges of
semi-empirical stomatal conductance models (Gaur & Drewry, 2024). In contrast, our study emulates the complex leaf
gas-exchange system implemented in Cropbox. As illustrated in Figure 1, our ML surrogate reproduces its outputs by
incorporating both environmental variables and model parameters that can be freely adjusted.

Materials and Methods

Environmental variables and FvCB parameters (VCmax, Jmax, Ra) Were uniformly sampled via Latin Hypercube Sampling
(LHS) and used as inputs to generate reference data. The environmental range was constructed to encompass extreme
climate conditions derived from multi-decadal meteorological records across various regions of Korea.

Simulated assimilation components (A, A;, Ap, Agross, Ra) from the leaf gas-exchange model were used as targets to train
multiple machine learning regressors, including Random Forest, Extra Trees, HistGradientBoosting, Gradient Boosting,
and XGBoost. Comparative analysis was conducted to assess the accuracy and computational efficiency of the ML
surrogate relative to the original Cropbox simulation.

Results and Discussion

Among tested algorithms, XGBoost yielded the best agreement with the original model for Agoss (RMSE = 0.34, MAE =
0.21, R? = 0.996). Processing 20,000 samples with the trained surrogate was over 50 times faster than the original
Cropbox simulation while maintaining comparable accuracy. Direct prediction of gross assimilation (Agrss) by ML also
surpassed the indirect minimum (A, A;, Ap,) method, confirming that the surrogate captured integrated physiological
constraints within the coupled gas-exchange system.
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Conclusions

The proposed XGBoost surrogate model accurately emulates the coupled FvCB—stomatal conductance system
implemented in Cropbox while reducing computation time by more than 98%. Existing process-based crop models suffer
from computational inefficiency because the strong feedback among coupled components requires iterative numerical
optimization during the coupling process. By contrast, our surrogate model based on machine learning effectively
alleviated these computational limitations. Future work will focus on extending Cropbox with a functionality that can
automatically generate and substitute surrogates for computationally intensive modules during runtime.
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Figure 1. Schematic Diagram of the Proposed Hybrid Modeling Approach

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agricultural Science and Technology Development (Project No. RS-
2025-02273248)” Rural Development Administration, Republic of Korea.

References:

Journal article

Gaur, S., & Drewry, D. T. (2024). Explainable machine learning for predicting stomatal conductance across multiple plant functional types. Agricultural
and Forest Meteorology, 350, 109955.

Kaneko, T, Nomura, K. Yasutake, D., Iwao, T., Okayasu, T., Ozaki, Y., Mori, M., Hirota, T, & Kitano, M. (2022).
A canopy photosynthesis model based on a highly generalizable artificial neural network incorporated with a mechanistic understanding of single-
leaf photosynthesis. Agricultural and Forest Meteorology, 323, 109036.

Yun, K., Timlin, D., & Kim, S.-H. (2020). Coupled Gas-Exchange Model for Cs Leaves Comparing Stomatal Conductance Models. Plants, 9(10), 1358.

Yun, K., & Kim, S.-H. (2023). Cropbox: A declarative crop modelling framework. in silico Plants, 5(1), diac021.

ICROPM ::.

FLORENCE "+, =




Crop Modelling for Agricolture

Groundwater should be considered in crop risk assessment

Kim Yean-Uk*!, Webber Heidi?

1 Department of Landscape Architecture and Rural Systems Engineering, College of Agriculture and Life Sciences, Seoul National University, 08826,

Seoul, Korea, dallas13@snu.ac.kr
2 Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Miincheberg, Germany

Keywords: water table, drought, waterlogging, crop model, model improvement

Introduction

Extreme weather events such as drought and flooding are becoming more frequent and intense, causing devastating
impacts on agricultural productivity, farmer livelihoods, and food security. Recent studies suggest that shallow
groundwater influences the severity of drought and waterlogging stresses on crop yields (Deines et al., 2024). Capillary
rise from shallow groundwater provides additional water for root uptake, plant transpiration, and soil evaporation,
thereby mitigating drought stress. On the other hand, very shallow water tables can lead to excess soil water around
root zone, intensifying waterlogging stress. A global analysis estimates that water table depth lies within or near the root
zone in 22—-32% of terrestrial land area, highlighting the need to improve our understanding and modelling of the shallow
groundwater impacts on aboveground productivity (Fan et al., 2013). However, groundwater impacts on vegetation are
often neglected in risk assessment studies using process-based models, which may result in systematic biases in
simulated drought and waterlogging stresses (Ukkola et al., 2016). Here, we present field- and nation-scale evidence
demonstrating that incorporating groundwater effects enhances the skill of a process-based crop model to simulate
water balance and crop growth.

Materials and Methods

We first improved the default SIMPLACE <LINTULS5, SLIM> process-based crop model by integrating new modules that
simulate the influences of groundwater on root-zone water balance. Second, we used lysimeter data to evaluate the
performance of both the default and improved models in simulating net water flux at the bottom of the lysimeter (i.e.,
1.5m below soil surface), actual evapotranspiration, aboveground biomass, and grain yield. Afterwards, we conducted
nationwide simulations across Germany with both models and compared the results to winter wheat yield statistics to
assess whether incorporating groundwater improves the model's explanatory power for spatiotemporal yield variability.

Results and Discussion

Model evaluation with the lysimeter data showed that incorporating groundwater effects significantly improved the
model's skill in simulating water balance and crop growth (Figure 1a-c). Before the improvement, the simulated net
bottom water flux was always negative (i.e., loss to deeper layers), whereas the observed net bottom water flux ranged
from -101 mm per season to +52 mm per season. After the improvement, the simulated net bottom water flux aligned
more closely with the observations, with a maximum simulated value of +36 mm per season. This more accurate
representation of water balance at the bottom boundary, improved the simulation of actual evapotranspiration. The
improved simulation of actual evapotranspiration led to a more realistic representation of drought stress, which is
calculated as actual evapotranspiration divided by potential evapotranspiration, ultimately resulting in better
simulations of aboveground biomass and yield.

Nationwide simulations indicated that incorporating groundwater effects improved the simulations of spatiotemporal
variability in winter wheat yield across Germany (Figure 1d-e). The default model underestimated yields during the hot
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and dry year of 2018, while the improved model reduced this bias by capturing the buffering effect of shallow
groundwater against drought. Conversely, the default model significantly overestimated yields in the wet years of 2013
and 2016. Although the improved model slightly reduced this error, the simulated yields remained much higher than the
observations. These results highlight the need to improve crop models to capture various stresses due to excess rain,
including not only waterlogging, which is partially represented in the improved model, but also submergence, lodging,
pests, and diseases, which are not yet considered. Although the improved model performed slightly better in simulating
spatial yield variability, both models still failed to adequately capture it. This outcome is expected, as the simulations do
not account for local practices such as the use of cultivars with varying drought and waterlogging tolerances, irrigation
strategies, and drainage systems, primarily due to a lack of high-quality and fine-resolution spatial data.
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Figure 1. Evaluation of the default and improved crop models. Field-scale evaluation with lysimeter data (a—c) including cumulative net water flux at
the bottom of lysimeter (cumWFb), cumulative actual evapotranspiration (cumETa), aboveground biomass (AGB), and grain yield (GY). National-scale
evaluation of temporal (d) and spatial (e) variability in German winter wheat yield. NRMSE denotes normalized root mean square error. The absolute
error change is calculated as the absolute error of the improved model minus that of the default model. The temporal statistics are calculated across
the years 2011-2020, while the spatial statistics are calculated across NUTS3 districts.

Conclusions

Here, we provide evidence highlighting the importance of incorporating groundwater impacts on crop growth to better
capture spatiotemporal variability in crop yields. However, several limitations remain that should be addressed in future
research. First, since shallow water tables play a more significant role during extreme dry and wet years compared to
normal years, it may be necessary to conduct further analysis using large ensembles of climate model outputs, which
better capture interannual variability, rather than relying solely on historical records. Second, we did not consider the
effects of crop management on water table depth, as we relied on static monthly data from groundwater modeling. To
simulate the feedback loop between crops and groundwater, it would be necessary to dynamically integrate a process-
based crop model with a hydrological model that includes both surface water and groundwater processes.
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Introduction

We present a novel modular crop growth simulation model ‘Swap-Snomin-Lingra’ composed of the water balance
module of the SWAP model (Heinen, 2024), the soil organic matter module SNOMIN (Berghuijs 2024) and the LINGRA
grass model (Schapendonk, 1998). The new model was especially designed for simulating specific conditions in Dutch
grassland management. Grass in the Netherlands is produced mostly in the wetter soils, often below sea level, with high
groundwater levels and with drainage canal systems ensuring the top soil layer is not completely saturated throughout
the year. The SWAP model component with associated data sources is particularly suited for simulating these conditions.
The Netherlands has a large animal sector and animal manure is an important input for intensively managed grassland.
The SNOMIN model component can simulate mineral and organic nitrogen (N) dynamics in the soil and simulate N
release from organic manures. The LINGRA crop component can simulate grass growth in response to weather, water
availability and nitrogen. The Digital Future Farm (DFF) (van Evert, 2021) presents a modelling framework for coupling
the components, allowing them to automatically exchange simulated variables between the components. Crop modeling
can give insight in current status of crop and estimate the effect of different management (fertilizer application, mowing
timing) choices. Swap-Snomin-Lingra gives insight in the interaction between soil water dynamics, organic fertilizer and
SOM mineralization, grass N uptake and grass growth and environmental impact (N leaching). The new model was
validated with two experimental datasets.

Materials and Methods

The ‘Zode bemesting’ experiment was with 3 cattle manure levels. The ‘Amazing Grazing’ experiment included
destructive measurements at 4 timepoints each cut. In both experiments there were 3 locations, 3 years, 4-6 grass
growing cycles per year (each ending with mowing) and 3 mineral fertilizer levels. The two experimental datasets contain
measurements on biomass (kg dry matter hal), N content of the biomass (%) and total N in biomass (kg N hal). The
Amazing Grazing dataset also contains measurements on groundwater level (cm below ground level).

In the DFF framework, modular soil-plant component models are set up as a standardized interaction between 5
components: a soil water component (in this application: SWAP), a soil nitrogen component (SNOMIN), a crop growth
component (LINGRA), a meteo component (TipstarMTC) and a soil temperature component (TipstarSTC). The exchange
between these components is limited to a couple of variables, including potential and actual (evapo)transpiration rates,
nitrogen uptake rate, water fluxes between soil layers, LAl and root depth.

Results and Discussion

Included is the comparison between experimental observations and simulation output for N content of the biomass.
Similar plots were made for biomass, total N in the biomass and groundwater level. As expected, the Swap-Snomin-
Lingra model shows increasing N uptake with higher N application, roughly in accordance with measured levels. The
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simulated produced biomass has more deviance compared to the experiment observations. This might be due to the
distinction between live and dead biomass, where the experimental data combine both but the simulation output

Table 1. RMSE of compared variables in both datasets

AmazingGrazing ZodeBemesting
Biomass (kg dm ha™®) 967 657
N in biomass (kg N ha') 29.26 31.08
N content (%) 0.75 0.76
Ground water level (cm below surface) 42.45

gives only live biomass. Simulated groundwater level roughly follows observed trends, but it shows larger deviation
from the observed groundwater level at lower levels than when groundwater depth is shallow.
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Figure 1. Simulated vs observed nitrogen content of the live biomass (kg N kg dm™) per location and year in the zodebemesting experiment.

Conclusions

The concept of a modularly designed crop growth simulation model with exchangeable components presents a powerful
concept of model design tailored for specific conditions and building of a large knowledge base embedded in existing
modules. Validation of Swap-Snomin-Lingra model simulations with observed biomass and observed nitrogen showed
first promising results.
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Silvoarable agroforestry, the integration of trees or shrubs into cropland, is increasingly promoted also in temperate
regions to enhance biodiversity, carbon sequestration and reduce soil erosion (Veldkamp et al., 2023). Furthermore, it
can have several benefits for crop production, potentially improving resilience in the face of extreme weather events
(Dobhal et al., 2024). However, it is challenging to predict the influence of trees on crops growing nearby. Trees influence

different biotic and abiotic crop stressors, and this influence varies with increasing distance from the trees (Jacobs et al.,
2022) and throughout the growing season. The intensities of stressor exposure are expected to display gradients
perpendicular to the tree rows (Figure 1), resulting in different relative stressor intensities at each distance from the tree
row. Here, we explore methods to investigate how crop responses to irradiation, temperature, as well as water
availability change with the distance from trees using statistical and process-based crop models.

First, statistical models that can consider temporal and, where needed, spatial autocorrelation are used to investigate to
which degree the irradiation gradient (i.e. tree shade) is a predictor for the gradient in soil water availability and
temperature. Second, a process-based crop model within SIMPLACE (Enders et al., 2023) based on Lintul 5 is calibrated
using crop development and growth data as well as abiotic stressors measured at a large distance from the tree row or
at a reference field without trees. A standardized calibration protocol is developed to make the method reproducible for
different sites. Using this model, its performance in simulating crop growth closer to the tree when only the irradiation
hitting the canopy, or only the soil water availability, or both are adapted to measured values close to the tree row are
assessed. The model output can be compared to the observed crop growth using regression models like the ones
described from the first methodological step. These methods can help to understand which (combination) of
environmental gradients is most decisive for crop growth close to trees.

To avoid the need to model the water uptake by the tree roots explicitly, measured soil moisture data is assimilated into
the process-based model. Furthermore, a model for the crop canopy temperature is included as crop canopy
temperature results from a non-linear interaction of air temperature, irradiation, the plant water status, wind speed and
atmospheric stability conditions. This allows assessing possible improvements in model predictive skill when this
interactive effect is accounted for.

Later, the methods will be tested by using data from wheat and maize at two agroforestry sites in Germany where
stressor exposure is monitored over time by measuring irradiation, soil moisture, wind speed, and crop canopy
temperature. Crop responses are monitored by measuring phenological development and leaf area index over time as
well as final biomass and grain yield. The results will support understanding whether crops close to trees respond to
abiotic stressors in the same way as expected in sole cropping, i.e. trees mainly change the stressor exposure, or whether
unique stressor responses resulting from the presence of the trees should be considered in agroforestry models.
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Figure 1. Hypothetical example of gradients of microclimatic variables, i.e. abiotic crop stressors perpendicular to tree rows. The shape of the
gradients is based on available evidence and/or personal expectations. The gradients have no scale and no common zero point. Adapted from
Jacobs et al., 2022.
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Introduction

Accurate simulation of daily evapotranspiration (ET) is essential for assessing water stress and irrigation management in
wheat. Previous multi-model ensemble studies have revealed a systematic underestimation of winter wheat ET and
proposed preliminary explanations(Webber et al., 2025), but the environmental drivers of simulation errors remain
unclear. This study investigates which factors shape ET simulation accuracy in semi-arid and Mediterranean wheat
systems.

Materials and Methods

We analyzed daily ET from multi-model ensembles benchmarked against ET observation records in Bushland (Texas, USA)
and Avignon (France). Simulation error was quantified as the difference between modeled and observed ET. Beyond
error decomposition, we applied linear mixed-effects models to examine how environmental factors influence ET error
across crop development stages and ET estimation methods.

Results and Discussion

Error decomposition revealed clear structural differences between rainfed and irrigated conditions: higher mean
squared error (MSE) under irrigation was primarily driven by variance rather than systematic bias(Hodson et al., 2021).
Mixed-effects modeling further showed that vapor pressure deficit (VPD) and wind speed are the dominant
environmental drivers of ET error. We also labeled the simulation results based on the ET simulation method into three
groups: results simulated using the ETO method (ETO), results simulated using the Priestley-Taylor method for PET
(PET_PT), and results simulated using other methods for PET (PET_other).Under rainfed conditions, ET errors were most
sensitive to VPD during full canopy cover (ETO and PET_Other slopes = —0.87), weaker during senescence, and negligible
at early vegetative stages. Wind speed effects peaked at early vegetative stages (e.g., PET_PT slope =—-0.43) but declined
towards senescence. Under irrigation, both VPD and wind speed exerted stronger and more consistent negative
influences. VPD sensitivity peaked at senescence (slopes < —1.2), while wind speed significantly reduced errors across all
methods, particularly for PET_PT (-0.55 to —0.94). PET_PT-based simulations were least sensitive to VPD but most
sensitive to wind speed, whereas ETO and PET_Other were more strongly driven by VPD.
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Figure 1. Marginal effects of vapor pressure deficit (VPD, top) and wind speed (bottom) on daily evapotranspiration (ET) simulation errors under
a.rainfed (water-limited) conditions and b. irrigated conditions, estimated from linear mixed-effects models. Points represent slopes of ET error with
respect to standardized VPD or wind speed (+95% Cl), stratified by crop development stage

These findings indicate that the dominant error drivers shift from stomatal/soil-limited control under rainfed conditions
to aerodynamic/atmospheric control under irrigation. The significant DS x Method x Environment interactions explain
why model performance diverges under contrasting water regimes and emphasize the need to refine aerodynamic and
stomatal regulation processes in crop models.

Conclusions

The magnitude and direction of wheat ET simulation errors are jointly shaped by crop development stage, ET estimation
method, and atmospheric drivers, with distinct patterns under rainfed and irrigated management. Incorporating stage-
specific aerodynamic and stomatal controls could improve model realism and reduce systematic ET underestimation.
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Introduction

Plant species adopt contrasting ecological strategies ranging from fast-growing annual herbs to long-lived evergreen
trees, reflected in traits such as leaf mass per area (LMA), carbohydrate storage, and stomatal conductance (gmin). The
latter is a particularly critical trait under climate change, as it controls residual water loss when stomata are closed and
thus strongly influences drought survival (Burlett et al., 2025). Since metabolites are the biochemical building blocks of
plant traits, metabolomics provides a promising entry point for linking molecular processes with functional ecology
(Dussarrat et al., 2022). However, the integration of metabolomic data into trait-based and modelling frameworks
remains limited. Here, we combined non-targeted metabolomics, functional trait measurements, and machine-learning
approaches to assess whether metabolic profiles can predict plant functional traits, including complex physiological traits
such as gmin, and how these relationships may support modelling of plant strategies under climate stress.

Materials and Methods

A wide range of plant species was sampled in the Bordeaux area including trees, shrubs, and herbs (annuals and
perennials) across angiosperms and gymnosperms. Fully developed leaves were collected at comparable phenological
stages. Metabolites were extracted from 10 mg of lyophilized plant material using an ethanol fractionation protocol and
profiled by UHPLC-LTQ-Orbitrap MS in negative ion mode. Raw data were processed in MS-DIAL v4.9, yielding 4725
curated features after QC correction. Annotation relied on in-house metabolite libraries and ClassyFire ontology. Leaf
functional traits (LMA, leaf area, water content, stomatal area and density, gmax, gmin) Were measured and used as
prediction targets. Machine-learning models, consisting of Elastic-Net and LASSO Regression or classification, were
trained to predict traits from metabolite profiles. Feature selection methods were used to identify key metabolic
variables associated with each phenotype while adequate cross-validation and data splitting was used to reduce the risk
of overfitting.

Results and Discussion

Trees displayed conservative metabolic strategies, with high investment in lignans, carbohydrates, and storage amino
acids, while herbaceous plants, particularly annuals, exhibited metabolic profiles rich in TCA intermediates and nitrogen-
rich amino acids, supporting rapid growth. Evergreen trees showed enrichment in glycosyl conjugates and prenol lipids,
whereas deciduous species accumulated flavonoids and coumarins, reflecting possible seasonal shifts in defence
allocation.

Machine-learning models successfully predicted multiple functional traits from the metabolomic data. They showed for
example that species with low LMA accumulate primary metabolites that sustain rapid growth and metabolic activity,
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whereas high-LMA species are enriched in structural and defence-related compounds that enhance tissue density,
protection, and resilience. Importantly even gmin, @ complex physiological trait linked to leaf structure and cuticle
composition, was predicted with good accuracy. This demonstrates that metabolome embed information linked to
water-use strategies, offering a novel tool for modelling drought responses.

By linking metabolite fingerprints to traits underpinning resource use and climate resilience, our study highlights
metabolomics as a bridge between omics-scale data and crop models. Predicting traits like gminfrom metabolomic data
can reduce reliance on labour-intensive physiological assays, could improve parametrization of ecophysiological models
and could help identify resilient genotypes for breeding under climate change.

Conclusions

Our findings demonstrate that the building blocks of functional traits are encoded in metabolism and that metabolomic
data, combined with machine learning, can robustly predict both simple and complex traits such as gmin. This approach
offers a powerful addition to trait-based ecology and crop modelling, enabling more accurate integration of molecular
level information into simulations of plant adaptation and resilience under global change.
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Introduction

Climate change is adversely impacting the production of food and oilseed crops (AAFC, 2025). An accurate prediction of
plant development can help agronomists to evaluate the impact of different crop management practices and help plant
breeders to predict cultivar performance in the target population of environments or help select robust cultivars for
future target environments impacted by climate change.

The aim is to evaluate the WOFOST model prediction accuracy for three prediction problems faced by most breeding
programs and defined in the following scenarios: the first scenario is a hold-out location scenario to simulate a known
cultivar in an untested novel location, the second hold-out cultivar scenario simulates a new cultivar in a known test
location using crop parameters calibrated with observations from cultivars belonging to a similar maturity group, and
the third hold-out combined cultivar & location scenario simulates a new cultivar in an untested novel location. The
obtained results will help to understand the possibility to simulate the two key plant developmental stages, flowering
and maturity, for each of the defined scenarios.

Materials and Methods

In this spring oilseed rape (Brassica napus, canola) case-study, ten spring oilseed rape cultivars have been evaluated in
ten different field trials. The ten cultivars have been selected carefully for their differences in phenology or more
specifically time to flowering and time to maturity.

The WOFOST (WOrld FOod STudies, de Wit A. et al., 2019) simulation model is used to simulate the impact of different
environments, exposed to different abiotic stresses, on the spring oilseed rape phenology. For the calibration of the crop
phenological development model, we followed the 6-step protocol defined by Wallach et al. 2023. To determine the key
input parameters involved in the simulation of crop development we are using a systematic approach for the study of
the combined effect of all inputs on the output called uncertainty analysis and the study of the contributions of
components to the uncertainty of the model called sensitivity analysis (Saltelli A. et al., 2010). The key crop parameters
identified in the sensitivity analysis are then used for calibration of the WOFOST and Beta-Distribution Method (BDM,
Zhou & Wang, 2018) adapted WOFOST models. To find the optimized parameter values for the identified key crop
parameters, we performed a two-step approach. In the first step, a global optimization algorithm is used for finding the
feasible value that minimizes the objective function over the entire feasible region. And in a second step the optimized
parameters from the global optimization algorithm are used as the starting point for a local derivative-free optimization
subplex algorithm.
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For the evaluation of the model performance, all available observations for the same cultivar or for the same maturity
group are used for the calibration of the identified key crop parameters. And ultimately, the model prediction accuracy
is evaluated for the three most relevant prediction problems in plant breeding as defined in the introduction.

Results and Discussion

The performed sensitivity and uncertainty analysis is indicating that the oilseed rape phenology is mainly temperature
driven, and two crop parameters (TSUM1 & TSUM2) have been identified explaining most of the variability in the crop
model output. As illustrated in the Top Marginal Variance (TMV) composition plot for the evaluation of the parameter
sensitivity changes over time during the crop growing period (Figure 1).
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Figure 1. Plot daily TMV composition for evaluation of parameter sensitivity changes over time during the crop growing period using SAS23b
weather data. For WOFOST model (IDSL = 0) only parameters TSUM1 & TSUM2 are sensitive, all other non-sensitive parameters stay close to zero.

The WOFOST model performance evaluation results confirm a good performance for the DOA simulation with a RMSE
value of 4 days. However, a moderate estimate was obtained for DOM with a minimum RMSE of 12 days. Improved
prediction accuracy for the predicted DOA and DOM dates can be obtained when a well-represented selection of
locations is included in the training set for calibration (HO_2024, Table 1).

Table 1. Overview of RMSE and Willmott refined index of agreement calculations obtained per scenario for the best and the worst DOA simulations.

Scenario Training set Avera%e Min Max T . Max . Min
data points |WyRMSE | RMSE | |Willmott ref. | Willmott ref.

performance all observations 41 2.57 8.15 0.89 0.56
hold-out cultivar cultivar hold-out (HO_entry) 57 9.12 18.32 0.48 -0.26
hold-out cultivar cultivar hold-out Canada only (HO_entry_CAN) 48 9.38 18.18 0.26 -0.30
hold-out location year 2024 hold-out (HO_2024) 18 7.26 12.50 0.50 -0.33
hold-out location 20% locations hold-out (HO_20%) 22 9.12 18.43 0.48 -0.27
hold-out location location hold-out Canada only (HO_location_CAN) 14 10.38 14.27 -0.17 -0.76
hold-out cult. & loc. combination cultivar location hold-out Canada only 42 9.00 18.75 -0.89 -1.00
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Conclusions

The proposed systematic approach for uncertainty and sensitivity analysis highlighted the critical role of temperature
in driving the phenological development of spring oilseed rape, as modeled by WOFOST. Cultivar- and maturity group-
specific calibrations showed promise, especially when the training dataset used for calibration is aligned with
environmental variability of the target environments. DOM predictions are expected to be more challenging due to the
complexity of genotype x environment interactions. The potential benefits from crop developmental stage-specific
temperature functions and possible influence of additional variables warrant further validation and may offer
opportunities to improve the DOM simulations. Future research should explore advanced calibration techniques,
including Bayesian and machine learning approaches, to enhance model reliability and scalability.
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Introduction

Wheat is one of the world’s major staple crops, providing much of the global calorie intake. However, it is highly sensitive
to tropospheric ozone (03), a secondary pollutant formed from nitrogen oxides, volatile organic compounds, and other
precursors. Oz exposure reduces primary production and crop yields, yet its impacts on soil organic carbon stocks remain
poorly studied, and most climate models omit O; effects, introducing biases in future projections.

Materials and Methods

The CERES-03 cropping system model (Lebard, 2005), an extension of CERES-EGC (Gabrielle et al., 2006), simulates crop
development and associated fluxes of carbon, water, and energy using meteorological forcing data and information on
agricultural management practices (e.g., crop rotations, residue management, organic inputs). It integrates Farquhar’s
photosynthesis equations (Farquhar et al., 1980) as well as equations accounting for ozone impacts on photosynthetic
assimilation, and hence on yields and biomass production. Oz impacts are represented through a flux-based Phytotoxic
Ozone Dose with an 8 nmol m=2s™ threshold (PODS8), computed from hourly modeled stomatal Os flux and accumulated
over the growing season (mmol m=2 leaf). PODS8 then drives reductions in photosynthetic capacity (e.g., Vcmax/Jmax)
and earlier senescence. Unlike most existing studies using crop models to assess Oz impacts on yields only, our flux-
coupled framework extends the impact assessment of soil carbon dynamics, a link rarely quantified in crop—climate
assessments.

Model calibration relied on a 2009 field experiment conducted in Grignon, France, where two wheat varieties were
exposed to different O3 concentrations generated at varying distances from a fumigation ramp. Observed Os levels
served as treatments to assess physiological responses, which were then extrapolated to yields, biomass, and soil carbon
pools. Model validation was extended to several years by using wheat yield and biomass data from the same site, with
ambient Oz concentrations and management practices retrieved from the ICOS carbon portal.

Results and Discussion

Simulations suggest that O; reduces carboxylation, electron transport, and stomatal conductance, while increasing dark
respiration and accelerating senescence. These processes decrease assimilation, biomass accumulation (= 20%), and
yield (= 11%). In addition, long-term simulations (10 years) indicate a decline in soil organic carbon stocks under elevated
0s.
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Figure 1. Impacts of ozone on plant production and soil organic carbon stocks

Conclusions

Overall, tropospheric ozone (0s) poses a dual threat — not only by reducing wheat yields, thereby compromising food
security, but also by weakening the capacity of agroecosystems to store carbon, and thus our ability to mitigate climate
change. Our findings underscore the need to integrate O; effects into cropping system models at larger scales to better
assess yield losses and soil carbon decline in European wheat systems, both under current conditions and across future
scenarios of climate change and air pollution.
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Introduction

Crop simulation models are widely used to predict crop growth and yield under varying environmental conditions.
However, most studies have relied on fixed temporal resolutions, often at daily or sub-daily scales, but rarely with
systematic evaluation of how alternative temporal scales affect prediction accuracy and computational demand. Since
physiological processes such as photosynthesis and carbon assimilation are nonlinear, coarse temporal resolution may
lead to biased estimates. Despite recognition of these issues, few studies have quantified the biases arising from
different temporal resolutions and their implications for model performance. This study addresses this gap by testing
multiple temporal resolutions in a garlic model implemented within the Cropbox framework.

Materials and Methods

Hourly weather data were obtained for the study site and period. These data were resampled into multiple temporal
resolutions ranging from 1 hour to 168 hours using Julia (TimeSeries.jl). Meteorological variables were aggregated by
mean or by sum. Missing values, if present, were interpolated from daily means to preserve continuity.

Simulations were conducted using the garlic crop model implemented in the Cropbox framework (Hsiao et al., 2019,
Yun et al., 2022). Cropbox provides explicit specification of physical units for all variables, allowing flexible adjustment
of simulation time steps via configuration (Yun & Kim, 2023). For each resampled weather dataset, the model was
initialized at the first timestamp of the series, and the simulation time step was set to match the aggregation interval.

Model outputs included dry yield, carbon assimilation, leaf appearance, leaf area, and bulb mass. Simulation results
from each temporal resolution were compared against the baseline 1-hour simulation using RMSE and MAE.
Computational cost was quantified by measuring model runtime from initialization to completion in a specified
computing environment (Mac mini, 2023; Apple M2 chip; 16 GB RAM; macOS 14).

The overall workflow of the experiment, from input data to trade-off evaluation between accuracy and computational
cost, is illustrated in Figure 1.

Results and Discussion

Coarser temporal resolutions tended to overestimate carbon assimilation due to the nonlinear light-response of
photosynthesis and accumulated numerical integration errors, especially when diurnal variation was smoothed.

In contrast, morphological traits such as leaf area and leaf appearance were relatively insensitive to resolution, as they
are governed by thermal time functions, namely growing degree days (GDD) and the Beta function, which robustly
captured temperature variation regardless of step size. This underscores the differing sensitivity of radiation-driven
growth processes vs. temperature-driven morphological processes.
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Thus, while radiation processes were more sensitive to changes in temporal resolution and temperature processes
remained relatively stable, larger time steps substantially reduced computational cost, ultimately confirming the
inevitable trade-off between accuracy and efficiency.

Conclusions

This study highlights the crucial role of temporal resolution in crop modeling. While hourly data ensure higher
accuracy, they demand greater computational resources. Coarser resolutions reduce cost but can introduce significant
biases in carbon dynamics and stress responses. By quantifying both prediction accuracy and computational demand,
this research can provide practical guidelines for selecting appropriate temporal resolutions in crop modeling

Hourly weather data

Tair RH Wind SolRad Rain

I

Resampling using Julia
(TimeSeries.jl)

AR

1h 2h 3h 167h 168h
Garlic crop model
Model Outputs
leaves appeared leaf area green leaf area assimilation available carbon dry yield
Accuracy Computational cost
(e.g., RMSE, MAE) (runtime on Mac mini 2023)

~

Trade-off Evaluation

applications.

Figure 1. Workflow for evaluating temporal resolution in the garlic model

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agricultural Science and Technology Development (Project No. RS-
2025-02273248)” Rural Development Administration, Republic of Korea.

ICROPM ::.

FLORENCE "+, =




Crop Modelling for Agricolture

References:

Journal article

Hsiao, J., Yun, K., Moon, K. H., & Kim, S.-H. (2019). A process-based model for leaf development and growth in hardneck garlic (Allium sativum).
Annals of Botany, 124(6), 1143-1160.

Yun, K., Shin, M., Moon, K. H., & Kim, S.-H. (2022). An integrative process-based model for biomass and yield estimation of hardneck garlic (Allium
sativum). Frontiers in Plant Science, 13, 783810.

Yun, K., & Kim, S.-H. (2023). Cropbox: A declarative crop modelling framework. in silico Plants, 5(1), diac021.

FLORENCE " . 233

ICROPM ::
~.2026; ‘




Crop Modelling for Agricolture

Implementing crop heat stress effects in the Community Land Model (CLM5)
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Introduction

Global land surface models (LSMs) describe vegetation growth in detail, with a photosynthesis module allocating the
carbon and nitrogen concentrations to each part of the plant (leaves, stem, roots), while simulating the energy use and
plant hydraulics and connecting fluxes to the environment (soil, atmosphere) of the plants. Crop modules to simulate
global yield for different crops are one of the most recently added components to LSMs (Fisher and Koven, 2020). LSMs
usually take more a generic approach compared to process-based agronomy models, which were mainly developed for
field-scale applications and model detailed growth stages, different stresses and various management practices. The
coarse spatial resolutions (0.5-2.0° lat/lon) and lack of detailed crop information at the global level, make crop
implementations in LSMs challenging, resulting in simplifications of crop growth stages and land management practices
(Levis, 2014). However, the need for more accurate representation of crops on a global scale increases with increasing
threats to global production, such as climate extremes. As heatwaves are already becoming more frequent, we present
some model implementations to target heat stress effects on crop production and evaluate them for the some major
crops in the Community Land Model (CLM5).

Materials and Methods

A new module is introduced for this study to the CTSM5.2 code, called CropHeatStress. This module contains several
functions to keep track of heat stress days during the crop growth phase. Several implementations and parameterizations
are assessed to target the leaf area index (LAI) or crop grain production directly. To define heat stress thresholds, the
mean vegetation daytime temperature is used (Tveg,day), Which is considered to be a more direct indicator of heat stress
compared to air temperature (Siebert et al., 2014), and also includes the reduced impact for irrigated crops due to leaf
cooling.

The main aim of this study is to improve the crop representation on the global level by including yield sensitivity to heat
stress, hence a global analysis approach is used here. The model adaptations are evaluated in terms of i) model impact
and ii) large-scale model accuracy. Model adaptations are based on similar approaches used in process-based agronomy
models. The yield simulations are compared with gridded yield data and for the different IPCC regions during the period
of 1980-2014.

Results and Discussion

Research is still ongoing, but some preliminary findings can already be presented in this abstract. First of all, using
vegetation temperature to define critical temperature thresholds results in reduced effects of heat stress for irrigated
crops compared to rainfed crops over the same region, as expected. This also shows the strong link between drought
and heat stress of vegetation, as rainfed crops often do not have the capacity of self-cooling due to limited soil water
availability during warm periods. Several test simulations were done to apply heat stress in different ways, either to
accelerate leaf senescence and reduce grain production, or alternatively, only reduce the carbon allocation to grains
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during the grain production phase in CLM5. Preliminary results suggest that targeting the grain production directly gives
a better accuracy compared to the indirect measure of accelerating LAl senescence (figure 1), however this experiment
shows also little change over most regions. The current tests only consider an absolute critical temperature value, which
results in overprediction of stress in mid-latitudes and an underrepresentation of stress in high latitudes. Ongoing model
implementations include testing other stress functions and including a climatology-based critical temperature threshold
rather than absolute temperature values, with the aim of improving the temperature stress representation globally.
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between the Root Mean Square Error (RMSE) of CLM experiment standard yield anomalies (YSA (-)) and the CLM control run, in which the RMSE for
each experiment and control run is calculated with the Earthstat-FAO gridded annual yield dataset (also used in Lombardozzi et al., 2020). Negative
values indicate the experiment had a lower RMSE with the reference data, and thus a higher accuracy, compared to the control run.
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Introduction

Understanding the drivers of agricultural yields is critical for ensuring food security in the face of climate change, shifting
land-use pressures and consumer demands. The growing availability of high-resolution data has created new
opportunities for applying machine learning (ML) to this challenge (van Klompenburg et al., 2020). Despite not modelling
biophysical processes, ML approaches have often achieved higher predictive accuracy than process-based biophysical
models. At the same time, concerns remain about the limited interpretability of many ML models. Recent advances in
interpretable ML, including SHapley Additive exPlanations (SHAP; Lundberg and Lee, 2017), provide ways to trace model
predictions back to underlying drivers and reveal nonlinear relationships that are difficult to capture with traditional
methods. This “explainable ML” is gaining traction in agronomic research (e.g. Tamayo-Vera et al., 2025).

Along with methodological advances, data availability also shapes how ML can be applied in studying yields. Yield
modeling often relies on field trials, or aggregated regional data (e.g. Lischeid et al., 2022). While field-trial data minimize
measurement error, they do not capture actual farmer behavior also shaped by market conditions and coordination
issues. In this study, we assess the potential of machine learning to analyze and predict yield variation in two major crops
— winter wheat and maize — using observational Austrian farm- and plot-level panel data covering 2015-2023. Our
objectives are (1) to evaluate the out-of-group predictive performance of several commonly used ML algorithms, and (2)
to identify which biophysical and management features contribute most to predicted yield variability.

Materials and Methods

We fit four tuned ML models — two regression-based (Elastic Net; Multivariate Adaptive Regression Splines, MARS) and
two tree-based (Random Forest (RF), Extreme Gradient Boosting (XGB)). Farm vyields and management data
(expenditures on pesticides and fertilizers, livestock density, plus binary indicators for organic farming and irrigation)
were obtained from the Farm Accountancy Data Network (FADN). From hourly INCA weather rasters (Haiden et al.,
2011), we extracted plot-level monthly summaries of temperature (minimum, maximum, average), precipitation sum,
and maximum wind speed using plot geometries from the Integrated Accounting and Control System (IACS). The plot-
level soil contents of sand, silt, clay, organic matter, and lime, together with soil pH, were obtained from the 1x1 km grid
“ebod2”. The analysis was conducted at three aggregation levels: (i) farms with only a single plot of wheat or maize
(single plots), (ii) all plots considered individually (all plots), and (iii) farm-level area-weighted averages across multiple
plots (weighted averages) to compare model performance across different spatial scales. We tested three sets of
explanatory features: (i) management, (ii) biophysical (weather, soil, topography), and (iii) all features combined. We
applied SHAP to quantify global variable importance and explore variable-specific response patterns in yield predictions.

Results and Discussion

Across 72 model specifications, wheat yields were predicted more accurately than maize yields, with best-performing
models yielding R? values of 0.57 for wheat and 0.38 for maize. Models using combined biophysical and management
features consistently outperformed those using only management or only biophysical features. Predictive performance
was best at farm-level aggregation for wheat, but plot-level aggregation for maize. Among algorithms, tree-based
methods (XGB and RF) generally outperformed regression-based models across crops and aggregation levels.

SHAP analyses highlighted clear differences in yield drivers (Figure 2). Wheat yields were strongly shaped by
management practices, with pesticide application, organic farming status, and livestock density among the top
predictors. Maize yields, in contrast, were more sensitive to meteorological and soil factors, particularly summer rainfall,
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maximum temperatures, and soil texture. Elevation and soil texture, particularly silt content, were important for both
crops, showing nonlinear yield responses — for instance, an S-shaped effect of silt, inverted U-shaped effects of pesticide
expenditure, and rainfall and temperature thresholds beyond which maize yields declined. Seasonality was also
important: maize yields depended heavily on summer weather extremes, whereas wheat yields were influenced by
winter vapor pressure, spring rainfall, and early-summer soil moisture.

Maize Wheat
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. Management . Meteorological . Soll . Topographical
Figure 2: SHAP importance plots of the ten most important features for maize and winter wheat
Conclusions

Machine learning models, particularly tree-based methods, provided robust out-of-group predictive performance, with
wheat yields generally more predictable than maize yields. Interpretable ML analyses indicated that management
variables play a central role in explaining wheat yield variation, whereas maize yields are more strongly influenced by
weather and soil. Importantly, SHAP analyses revealed nonlinearities and threshold effects that point to yield
responses that are not proportional to inputs or weather conditions, and thus highlight critical tipping points where
small changes in management or weather can have large impacts. These results highlight the potential of ML
approaches not only to enhance yield prediction but also to generate insights into the relative importance of different
yield determinants across crops.
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Introduction

Accurate prediction of grapevine phenology is critical for optimizing vineyard management, especially under changing
climatic conditions. Process-based phenology models provide a mechanistic understanding of development stages and
are widely used for decision support in perennial crops. This study implements two process-based models, the Chilling
and forcing model (CF) (Cesaraccio et al., 2004) and Days Transformed to Standard temperature (DTS) (Ono & Konno,
1999), using the Cropbox framework implemented in the Julia programming language. Cropbox offers a declarative
modeling interface that simplifies the development and comparison of crop models, supporting modular and
structured specification of physiological processes (Yun & Kim, 2023).

The primary goal is to evaluate and compare the performance of the CF and DTS models for predicting grapevine
flowering dates across cultivars and regions in Korea. A simple ensemble model, combining CF and DTS predictions,
was also tested as a preliminary step(Yun et al., 2017). The central focus, however, is to demonstrate how the Cropbox
framework enables systematic and flexible analysis of process-based phenology. A schematic overview of the
modeling workflow is presented in Figure 1.

Materials and Methods

The analysis was conducted for two grapevine cultivars: Campbell Early (Vitis labrusca x Vitis vinifera) and Kyoho (Vitis
vinifera), across three major cultivation sites in South Korea: Naju, Okcheon, and Jinju. For each cultivar—site
combination, observed flowering dates (full bloom) and daily mean temperatures were collected from 1997 to 2024,
with the number of years varying by data availability. The CF and DTS models were implemented in Julia using the
Cropbox framework. Predictive performance of CF, DTS, and their simple average ensemble was evaluated against
observed flowering dates using root mean square error (RMSE).

Results and Discussion

The CF model generally outperformed the DTS model in terms of RMSE across most combinations. Ensemble predictions
consistently fell between the CF and DTS values and never produced the worst performance. However, the ensemble
rarely surpassed the best-performing individual model. Campbell Early showed more consistent responses to
temperature signals than Kyoho, suggesting cultivar-specific sensitivity. Differences in model performance across
regions suggest a potential influence of local climate variations or observation uncertainty.

Conclusions

This study demonstrates the effectiveness of the Cropbox framework in implementing and comparing phenology
models for grapevine flowering. While the simple ensemble of CF and DTS models showed moderate error reduction in
some cases, its benefit was not consistently superior to that of the individual models. Future work will explore broader
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ensembles that include additional phenology models, building on previous multi-model ensemble studies. Ultimately,
this research aims to construct a robust platform for grapevine phenology modeling capable of integrating diverse
approaches and adapting to future climate variability.

Figure 3. Schematic diagram of the proposed phenology modeling workflow using the Cropbox framework.
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Introduction

Among strategies to increase yield potential, modifying crop physiological traits to develop improved genotypes is a
promising strategy (Asseng et al., 2019). Identifying traits that contribute to possible yield increases is an important
step in breeding high-performing cultivars. While crop simulation models have been effective in evaluating such traits
under diverse environments, most applications have focused on water-limited conditions and assumed a non-limiting
nitrogen supply (e.g. Xiao et al., 2020). This leaves a critical gap for irrigated systems, where trait performance interacts
with nitrogen dynamics. To address this gap, we utilized the SSM-iCrop model to identify and prioritize physiological
traits that can enhance irrigated maize yields in four major maize-growing sites in Iran.

Materials and Methods

The SSM-iCrop model (Soltani et al., 2013) was parameterized and evaluated using multi-environment data (2001-2022),
showing nRMSE values of 6-23% and correlations of 0.80—0.98 for key traits, indicating satisfactory performance under
diverse nitrogen scenarios. For each study site, daily weather data from 2001 to 2022, including minimum and maximum
temperature, precipitation, and sunshine duration, were obtained from the Iran meteorological organization. Site-
specific soil information was extracted from the HC27 soil database. Crop management practices were defined according
to regional agronomic recommendations. Irrigation was automatically applied when 45% of available soil water had been
depleted to avoid water stress during the growing season. Nitrogen management was adjusted by an automated
algorithm to define site-specific optimal strategies, which were then fixed and applied across all years.

To explore genetic improvement, 53 genotype-specific parameters in SSM-iCrop were screened for sensitivity, and traits
with consistent positive yield effects were selected for in-silico modification. The modified trait values reflected the
observed genetic variation reported in previous studies. Yield responses of single-trait genotypes were assessed across
environments (2008—2022) relative to a reference cultivar, providing a basis for identifying traits with the most significant
potential to raise irrigated grain maize yields.

Results and Discussion

Accelerated leaf area expansion (PLAPOW) was the most influential trait, resulting in a 20% yield improvement across
sites (Fig. 1). Faster canopy closure enhanced radiation interception and early N uptake, confirming the central role of
early vigor in irrigated maize (Trachsel et al., 2017).

Extending vegetative (bdEMREJU) and grain-filling duration (bdSILPM) ranked second, raising yields by 17% (Fig. 1).
Longer assimilate deposition supported higher kernel weight, consistent with evidence that grain filling duration is a key
determinant of maize yield potential (Li et al., 2020). However, practical constraints such as fixed cropping calendars may
limit its applicability.

Increasing radiation use efficiency (RUE) and the slope of the harvest index (PDHI) ranked third in importance, reflecting
6 to 10% vyield improvement across sites. Their effects were most pronounced in short and medium-season
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environments, aligning with earlier findings that improved light conversion efficiency and assimilate partitioning remain
viable targets for yield improvement.

Nitrogen-related traits showed minor but significant yield gains (<3%). Among the nitrogen-related traits investigated,
the maximum rate of nitrogen uptake (MXNUP) made the most substantial positive contribution to yield, promoting
greater leaf area at silking, increasing post-silking radiation interception, and enhancing grain filling capacity (Fig. 1).
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Figure 1. Percentage change in crop yield of the in silico genotype across study sites during 2008—2022. Letters indicate statistical groupings; genotypes
sharing a letter do not differ significantly according to LSD test at P = 0.05. Model parameters modified in SSM-iCrop included PLAPOW (leaf area
expansion exponent), bdSILPM (days silking to maturity), bdEMREJU (days emergence to juvenile), IRUE (radiation-use efficiency), PDHI (slope of
harvest index increase during grain filling), HeatTH (critical maximum temperature for leaf destruction), KPAR (light extinction coefficient), TP2RUE
(upper optimum temperature for dry matter production), TCRUE (upper ceiling temperature for dry matter production), MXNUP (maximum N uptake
rate), FRTRL (initial crop mass for seed growth), SNCS (N in senesced stems), SLNS (N in senesced leaves), SNCG (N in green stems), HtLDR (leaf death
rate by heat shock), and WTOPL (crop mass threshold for leaf partitioning).

Conclusions

In conclusion, trait effectiveness varied across environments due to strong genotype-by-environment interactions.
Considering the challenges of extending the growing period owing to cropping systems constraints, accelerated leaf area
development in grain maize is the most promising trait for achieving higher yields in irrigated conditions. These findings
provide novel insights into potential breeding targets for irrigated grain maize under the growth conditions of Iran and

similar arid and semi-arid production environments.
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Introduction

Waterlogging (WL) affects 10-12% of global cropland (Bailey-Serres et al., 2012). Most studies rely on field data and
point-scale models, which don’t fully capture WL dynamics (Garcia-Vila et al., 2025; Néia-Junior et al., 2025). Remote
sensing (RS), especially SAR and multispectral data, enables large-scale monitoring. This study validates RS methods for
estimating WL-related yield losses in Germany and integrates them into a crop model to improve impact assessment.

Materials and Methods

Sentinel-1 SAR and Sentinel-2 MSI imagery (Copernicus program, ESA) were pre-processed using SNAP, Google Earth
Engine, and Python. Study areas included Bremen, Brandenburg, and Bavaria. WL detection combined edge-based Otsu
thresholding of SAR backscatter (< —18 dB), Gamma distribution fitting, and Markov Random Field smoothing to ensure
spatial and temporal consistency. RS-derived WL masks were merged with crop maps and used as oxygen deficit (OD)
forcing in the MONICA crop model (Nendel et al., 2011). MONICA represents WL stress through Critical Oxygen Content
(COC) and Time Under Anoxia (TUA) thresholds, enabling yield simulations under WL conditions.

Results and Discussion

RS(A-C) and MONICA(D-F) consistently identified WL in low-lying areas, in line with the DEM (Figure 1). Their overlay
showed strong spatial agreement, with WL stress concentrated in depressions. MONICA simulations indicated yield
reductions of 21.9%, from 4234.6 to 3538.8 kg ha™, consistent with earlier reports (Zaidi et al., 2007; Herzog et al., 2016).
While MONICA captures oxygen stress processes, its point-based nature restricts spatial coverage. RS, particularly SAR,
improves detection of WL extent and severity, making it a valuable complement to process-based models.

Conclusions

WL poses a significant risk to crop productivity. Integrating RS-based WL monitoring with MONICA simulations enhances
yield impact assessments and supports adaptation strategies under increasing extreme rainfall.
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Figure 1.Comparison of WL detection and MONICA yield simulations A: RS-derived WL distribution B: WL stress simulated with MONICA (TUA) C:
RS vs MONICA overlap D: With WL (kg/ha) E: Without WL (kg/ha) F: Relative yield difference (%).

Acknowledgements

The author gratefully acknowledges the financial support of the Federal Ministry of Food and Agriculture (BMEL), with project implementation by the
Federal Office of Agriculture and Food (BLE).

References:

Journal article
Nendel C, Berg M, Kersebaum KC, Mirschel W, Specka X, Wenkel, KO (2011) The MONICA model: A tool for simulating
sustainable agricultural production. Environmental Modelling & Software 26(12).

Herzog M, Striker GG, Colmer TD, Pedersen O (2016) Mechanisms of WL tolerance in wheat-a review of root and shoot physiology. Plant Cell &
Environment 39(5).

Zaidi PH, Rafique S, Singh, NN (2007) Response of maize genotypes to excess soil moisture stress: morpho-physiological effects and basis of tolerance.
Eur J Agron, 26(4).

Bailey-Serres J, Fukao T, Ronald P (2012) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 5(1).

FLORENCE " . 233

ICROPM ::
~.2026; '




Crop Modelling for Agricolture

Evaluation of oryza2000 model in simulating anthesis and maturity dates of rice varieties in
multi-locations in Bangladesh

Huu Thuy Nguyen *~, Md Ashrafuzzaman?, Gunther Krauss®, Michael Frei®, Thomas Gaiser®

1 Crop Science Group, Institute for Agriculture science and resource conservation (INRES), University of Bonn, Germany

2Department of Genetic Engineering & Biotechnology (GEB), School of Life Sciences, Shahjalal University of Science and Technology (SUST), Sylhet,
Bangladesh

3 Department of Agronomy and Crop Physiology, Justus-Liebig-University, Giessen, Germany

Corresponding author: tngu@uni-bonn.de

Keywords: SIMPLACE, sensitivity analysis, Morris scanning, temperature, uncertainty
Introduction

Accurate simulation of phenological stage is crucial in the application of crop growth models to predict eco-physiological
and yield processes. ORYZA2000 (Bouman et al., 2001) is the most widespread crop model for simulating rice growth in
different rice cropping systems where the phenological output is driven mainly by temperature and by eight crop
parameters. However, significant spatial variability in climatic conditions, along with the cultivation of diverse rice
varieties, introduce substantial uncertainty in model applications. Determination of crop phenological parameters are
important for the simulation of other crop growth processes and for modeling upscale.

Materials and Methods

We integrated the ORYZA2000v2v13 model to the SIMPLACE modelling framework then investigated model sensitivity
and performance in predicting phenological stages in Bangladesh which is one of the top rice producers worldwide. The
field measured data includes dates of anthesis and maturity of 20 rice varieties grown over 3 seasons (2020-2022) and
4 locations (Cumilla, Mymensingh, Rangpur, and Sunamganj). The Morris and Extended FAST methods were used to
perform the sensitivity analysis of different phenological crop parameters in simulating anthesis and maturity dates.
Variety-specific model calibration was carried out based on the observed anthesis and maturity dates in Cumilla in 2020
then the modeling validation was performed for the data from remaining seasons and locations.

Results and Discussion

The observed anthesis (and maturity dates) varied among varieties, locations, and seasons which could be explained
due to the differences in sowing and transplanting dates as well as the difference in local temperature and daylength.
Sensitivity analysis using the Morris and Extended FAST methods revealed that the parameter cDVRP (development rate
during panicle development, °Cd™) significantly influenced anthesis prediction, with total effect (u*) and interaction
effect (o) values of 55 and 59 days, respectively. Similarly, cDVRJ (development rate during the juvenile phase, °Cd™") had
even higher sensitivity, with u* = 67 and o = 85 days. In contrast, cDVRR (development rate during the reproductive
phase, °Cd™") was found to be most critical for simulating maturity, with u* = 43 and o = 86 days. Variety-specific model
calibration based on different combinations of those three parameters in 2020 in Cumilla shows a good simulation of
anthesis and maturity dates with average root mean square error (RMSE) of 5 and 3 days, respectively. However, model
validation across the remaining seasons and locations showed variable prediction accuracy, with RMSE ranging from 8-
25 days for anthesis and 9—32 days for maturity (Figure 1). With the higher heat unit (HU) as results of the higher air
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temperature from transplanting to anthesis, the model showed the earlier simulated anthesis dates in Rangpur in 2022.
Thus, compared to the observed data, there was a systematic underestimatimation of simulated anthesis and maturity
DOY for all varieties in this location (Figure 1d). The opposite performance of the model was found in Sunamganj (Figure
le).
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Figure 1. Comparison of simulated and observed anthesis (blue) and maturity (red) DOYs (day of the year) for twenty rice varieties from modeling
calibration using data from Boro season in 2020 in Cumilla (a) and modeling validation using data from Boro season 2022 in Cumilla (b), Mymensigh
(c), Rangpur (d) and Sunamganj (e). Blue and red lines indicate the linear regression between the observed and simulated anthesis and maturity DOY,
respectively. The abbreviation | (unitless), r (unitless), ABE (number of DOY) and RMSE (number of DOY) are agreement index, correlation coefficient,
absolute bias error, and root mean square error, respectively. Data showing here is only for selected growing seasons and locations.

Conclusions

The oryza2000 has been implemented in SIMPLACE and tested with field measured anthesis and maturity data from 20
rice varieties. Use of variety-specific parameters derived from one season and location reasonably simulated the anthesis
and maturity DOY for that selected location and season, however is not generic enough for other seasons and locations.
This indicates that the model requires the local specific parameters which captures the interaction of genotype with
location and seasonal temperature change.
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Introduction

Crop modeling and digital twin concepts benefit from semantic information directly obtained from images of living
plants, e.g., branch count, leaf area index, and the number of flowers. Plant segmentation is required to separate the
plant from the background and from other plants, as well as to identify its various parts. Existing tools remain
inaccessible to most agronomists due to required programming skills and fragmentation limiting synergy. SegFormer can
automatically detect plant regions, while SAM allows for interactive refinement. These refinements can be fed back to
improve SegFormer’s training, creating a cycle of continuous dataset improvement. Current workflows treat them
separately, breaking this loop. AgriSegment (Tarif, 2025) addresses this gap with (1) a web-based platform that makes
advanced models accessible to agricultural researchers, and (2) a hybrid workflow where automatic detection supports
interactive refinement, producing high-quality phenotyping data essential for parameterizing and validating crop
models.

Materials and Methods

We developed four web apps using advanced segmentation models. These include SegFormer for semantic
segmentation (Elmessery et al., 2024), SAM (Kirillov et al., 2023) for interactive corrections, Mask2Former for panoptic
segmentation (Darbyshire et al., 2023), and a hybrid method that combines SegFormer’s automatic point generation
with SAM’s interactive tools. The system is built with FastAPI and works in real time, supporting different image formats
and output options. Users can start with automatic detection and then switch to interactive refinement if higher accuracy
is needed. Apps provide plant area measurements, confidence scores, and results (binary masks, overlays, transparent
PNGs) to support detailed agricultural analysis.

Results and Discussion

The hybrid SegFormer-SAM workflow combines automatic and interactive segmentation. First, SegFormer automatically
creates seed points with semantic segmentation. Then SAM refines them with user-guided boundary corrections. This
method outperforms single-model workflows, especially when the canopy shapes are complicated and the field
conditions change. Processing speeds ranged from 2-3 seconds per image for automatic workflows to 8-12 seconds for
interactive refinement on NVIDIA RTX 3060 GPU. Users can export refined masks to retrain SegFormer, enabling
continuous improvement. This distinguishes our approach. Evaluation on 40 field images showed the interface removes
programming barriers, enabling agronomists to generate training data. Users can select fast batch processing or precise
interactive analysis based on research needs. The source code of AgriSegment is freely available at
https://github.com/mehran-tarif/AgriSegment
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Figure 1. Automatic plant detection (left) and interactive refinement interface (right).

Conclusions

AgriSegment successfully combines automatic detection with interactive refinement, providing agricultural researchers
with accessible tools for high-throughput phenotyping. The feedback loop mechanism, where user refinements improve
the model over time, represents an important advance over fragmented workflows. By making advanced segmentation
models accessible through web interfaces, AgriSegment speeds up high-quality phenotyping data generation essential
for crop modeling research, supporting both breeding research validation and digital twin development for precision
agriculture.
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Introduction

Crop models are powerful tools for assessing the impact of changes in temperature, precipitation, and atmospheric CO,
on crop growth and productivity. While the effect of resource-driven growth limitations such as nutrient and water
availability is generally modelled in present crop models, other factors are often overlooked. Pests—including weeds,
insects, and fungal pathogens—are a major source of yield loss (Hossard et al., 2014; Mack et al., 2023). Yet, many crop
modelling studies sidestep these effects by assuming optimal pest control, an assumption that cannot always hold in
practice.

To assess the pest damage in crop models, a dynamic pest module was implemented into the crop model Expert-N and
evaluated using 14 years of field experiments from a site in Baden-Wirttemberg, Germany.

Materials and Methods

Affects ([ )
growthrate [ Fungicide Leaf area
application index
Air L Y,
temperature Reduces Reduces
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Figure 4. Schematic flow chart of pest damage interactions in the implemented pest module

To account for the effects of fungal damage on winter wheat, the generic pest model developed by Rasche and Taylor
(2017) was integrated into the crop model Expert-N. The implemented mechanisms are illustrated schematically in
Figure 1. The dynamic pest module simulates fungal inoculum growth as a function of daily temperature and relative
humidity. The resulting inoculum dynamics drive the progression of diseased plant area, which can reduce the leaf area
index (LAI) or grain filling rate, depending on the selected damage function. In this study, two damage pathways were
considered: leaf blight, which decreases LAI, and Fusarium, which reduces grain filling.
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The model was applied to simulate crop yields at the variety trial site Tailfingen in Baden-Wirttemberg, Germany. The
site is located on high-quality loess soil, where water limitations rarely occur. As a result, annual yield differences are
driven primarily by fungal diseases, making it an ideal location for such trials. The dataset covers 14 years of yield
observations under two management regimes: an ‘optimal’ treatment with multiple pesticide applications and a
‘reduced’ treatment with limited fungicide use. The crop model parameters were optimized to minimize the mean
absolute error (MAE) in comparison to the measured yields.

Results and Discussion

For the optimal treatment, simulations with the standard crop model resulted in a mean absolute error (MAE) of 930
kg/ha across the 14 years. Although this performance is moderate, it is strongly influenced by a few years with poor
fits—most notably 2016, when above-average rainfall led to yield overestimation, as the model cannot account for the
effects of prolonged wet conditions and delayed pesticide application. Incorporating the pest module reduced the MAE
to 550 kg/ha for the optimal treatment and 330 kg/ha for the reduced treatment. This demonstrates that the model can
capture the effects of reduced fungicide application—something not possible with conventional models. Importantly,
even though BBCH stages were not explicitly targeted during calibration, including the pest module improved overall
performance, as crop development parameters no longer had to implicitly account for pest effects

Conclusions

Incorporating dynamic pest effects into crop models offers several advantages. It enables the estimation of yield impacts
under reduced pesticide use—an important consideration given the growing emphasis on precise pesticide reduction.
At the same time, including a pest module improves model performance, as it explicitly represents pest damage rather
than leaving it to be absorbed indirectly during calibration.
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Introduction

In Senegal, yield declines highlight the close links between population growth, declining soil fertility and ecosystem
degradation (Faye et al., 2023). As arable land is limited, the cereal-legume association is one of the prototypes of
productive and sustainable ecological intensification cropping systems (Senghor et al., 2023). Because of the variability
in the performance of these associated crops, it is essential to use agronomic indicators to assess them (Bedoussac and
Justes, 2011). Dynamic crop models are tools that can help to understand and improve the agri-environmental
performance of these systems. This study therefore aims to assess the performance of STICS-Combined Crops (STICS-
CA) in simulating the growth and development of the millet-cowpea association in Senegal under contrasting
experimental conditions.

Materials and Methods

The data used come from trials conducted at the experimental station of the Centre National de Recherches
Agronomiques de Bambey (CNRA) under strictly rainfed conditions and with supplemental irrigation during the 2018
and 2019 rainy seasons. Millet, a Souna 3 variety, and cowpea, Baye Ngagne, a local seed variety, and 58-74f, a variety
with high fodder potential, were used. Two levels of mineral fertilisation were applied, 0OkgN/ha and 68.5kgN/ha. The 20
cropping situations in 2019 were used to calibrate the model, while those in 2018 were used for independent evaluation.
Each plot constituted a simulated crop situation based on observed measurements (soil, water, nitrogen, phenology,
growth). In 2018, organic nitrogen was estimated on the basis of composite analyses by block, while in 2019
measurements were available by plot. Soil water properties (field capacity and wilting point) were estimated from
moisture profiles by selecting the maximum and minimum representative values for each depth. Calibration was based
solely on site-specific soil and plant parameters, with the model's generic parameters retained, and was based on a
sequence ranging from phenological stages (calibrated according to Affholder et al., 2013) to LAI, then to water and
nitrogen dynamics, through to biomass and grain yield. The model's performance was assessed by graphical comparison
and using statistical indicators (EF, RMSE, rRMSE).

Results and Discussion

The model reproduced biomass (EF=0.8; rRMSE=30%) and acquired nitrogen (EF= 0.9 and rRMSE= 24%) well during
calibration, but its performance dropped during evaluation, particularly for yields (Fig.1). The simulations were more
accurate for millet than for cowpea, which showed greater discrepancies between observations and predictions. These
results corroborate the work of Traoré et al. (2022), confirming the model's ability to simulate biomass in
intercropping.
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Figure 1. The above-ground biomass (AGB) and plant nitrogen (plant N) at harvest, as well as the number of grains per square meter and the grain
yield, were observed and simulated by STICS-AC for the millet and cowpea calibration dataset.
The dotted black line is a straight line with the equation y = 1/1. The blue line shows the regression of the simulated values against the observed
values.

The model reproduced the advantage of millet in intercropping over pure cropping, although it tended to overestimate
yields (Fig. 2). It also simulated higher humus mineralisation in intercropping (138.15 kg/ha) than in pure cropping
(110.15 kg/ha), but the lack of details on the calculation of the ‘priming effect’ in STICS prevents this difference from
being fully explained. The model was able to reproduce the effects on millet performance of the choice of cowpea variety
in the associations, of fertilisation and its interaction with the association, and of irrigation. However, it did not capture
the variability in millet yield observed between the two years of the experiment.

Graln yleld (vha)

Figure 2. The effect of cropping system, cowpea variety, fertilization, irrigation type and year on the observed and simulated grain yields of millet and
cowpea is shown below.

n1: Cowpea grain, n2: Cowpea forage, F1: Mineral fertilization (68.5 kg N ha-1) and FO: No fertilization (0 kg N ha-1).

Conclusions

Overall, STICS-CA reproduces the advantage of millet in intercropping and the effects of fertilisation, variety and
irrigation, despite poorly simulated interannual variability. It can still be used for virtual experimentation and evaluation
of intercropping systems in the Sahel, taking into account its limitations.
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Introduction

Understanding and predicting peanut (Arachis hypogaea L.) performance under water-limited conditions is crucial for
improving crop resilience in a changing climate. Peanut breeders are developing new water saver cultivars that have low
stomatal conductance, and that reduce transpiration and photosynthesis as the plant becomes drought stressed (Zhang
et al., 2022). Battisti et al. (2017) proposed methods to incorporate drought adaptive traits into the DSSAT-CROPGRO-
Soybean model and used the model to evaluate the impact of these traits on soybean production in Brazil. The objective
of this work was to incorporate the water saver trait into the DSSAT-CROPGRO-Peanut model and evaluate the model
using two sites and two years of field data in Alabama, USA.

Materials and Methods

The focus of the water saver strategy was to reduce transpiration and daily photosynthesis under water stress. A new
genetic coefficient, DT1 was introduced into the Ecotype file to modify transpiration and photosynthesis under drought
stress. In the model, once potential transpiration and daily photosynthesis is computed, it is modified based on the
equations presented in Battisti et al. (2017) for water-saving varieties

EOP = MIN (EOP, ((1.0-EXP(DT1*TRWUP*10/EOP)) * EOP))
PG = MIN (PG, ((1.0-EXP(DT1*TRWUP*10/EOP)) * PG))

Where EOP is daily transpiration without water stress (mm/day), DT1 is a calibration parameter in the ecotype file,
TRWUP is total potential root water uptake (cm/day), and PG is daily gross photosynthesis (g/m?2/d). For non-water saver
varieties, the values of EOP and PG initially computed by the model are not modified. If DT1 has a value of -99, no
modification of daily EOP and PG takes place.

Experiments were conducted in 2019 and 2020 at the E.V. Smith Research Center of Auburn University at Shorter,
Alabama (EV, 32°29' N, 85°53' W) and the Wiregrass Research and Extension Center of Auburn University at Headland,
Alabama (HL, 31°22' N, 85°19’ W) (Table 1). Two peanut varieties (C1: AU-16-28, a water saver, and C2: TUFRunner 297,
a drought susceptible variety) were planted each season in irrigated and dryland plots. Biomass including leaf, stem, pod
and seed weight, leaf area index and soil water content were collected periodically during the season. Genetic
coefficients were calibrated by Zhen et al. (2022) for the irrigated experiments for both locations for phenology
parameters. New model ecotype parameter DT1 and morpho-physiological cultivar parameters were re-calibrated to
minimize error for phenology, biomass, pod yield, and seed yield under dryland conditions for EV in year 2019/2020,
and evaluated for HL in year 2019/2020.
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Table 1. Peanut varieties, soil types, water treatments, years of data used for CROPGRO-Peanut model calibration and evaluation.

Experiment Locations Peanut varieties Soil Water Years Data used
numbers types treatments
Exp. 1 EV Smith research center at Loam Dryland and 2019/2020 Calibration
Shorter, Alabama (EV) Irrigation
C1: AU16-28
Exp. 2 Wiregrass research and C2: TUFRunner 297 sandy  Dryland and 2019/2020  Evaluation
extension center at Headland, loam Irrigation

Alabama (HL)

Results

Model performance was evaluated for two peanut varieties grown under dry conditions at EV and HL during 2019 and
2020, with and without the drought-tolerant modification (Figure 1). The drought-tolerant version (black points)

consistently improved agreement between simulated and observed values compared with the unmodified model (red
points). For phenology, both model versions captured key stages well with most of the points falling along the 1:1 line.

Biomass was simulated with RMSE values of 1177 kg ha™ (NRMSE = 0.11, D = 0.76) for calibration and 2147 kg ha™
(NRMSE = 0.18, D = 0.01) for evaluation, compared with 1553kg ha™ (NRMSE = 0.15, D = 0.37) and 2086 kg ha™
(NRMSE =0.17, D = 0.18) without DT1. Pod yield simulations had an RMSE of 454 kg ha™' (NRMSE = 0.10, D = 0.68) for
calibration and 482 kg ha™ (NRMSE = 0.08, D = 0.60) for evaluation, while the unmodified model showed larger errors
(590 kg ha™", NRMSE = 0.13, D = 0.37) for calibration but lower errors for evaluation (275 kg ha™, NRMSE = 0.05, D =
0.76). For seed yield, RMSE values were 488 kg ha™ (NRMSE = 0.17, D = 0.37) and 248 kg ha™ (NRMSE = 0.06, D = 0.83)
for calibration and evaluation with DT1, compared to 586 kg ha™ (NRMSE = 0.17, D = 0.37) and 418 kg ha™ (NRMSE =
0.10, D = 0.64) without DT1. Overall, these results indicate that the drought-tolerance parameter (DT1) enhanced
simulation of both phenological stages and yield-related traits under water-limited conditions.

Figure 1. CROPGRO-Peanut model performance for two peanut varieties (C1-C2, listed in Table 1) with (black points) and without (red points)
drought tolerant modification grown under dry conditions in EV and HL during 2019 and 2020.
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Conclusions

The modified CROPGRO-Peanut model with the new designed DT1 parameter simulated phenological stages of peanut
cultivars under drought conditions with high accuracy. The modified model gave improved simulations of biomass, pod
and seed yield compared to the original model. These results demonstrate the potential of the new drought tolerant
algorighms to improve simulation of drought-tolerant traits for peanut improvement.
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GLOBAL-SCALE SIMULATION OF WINDBORNE CROP DISEASE TRANSMISSION WITH LIVE 3-D VISUALIZATION
ENABLED BY GPU ACCELERATION

Authors:

Marcel Meyer, Thomas Gaiser, Frank Ewert

Abstract

The global burden of pathogens and pests on major food crops is estimated at 17-30%. Despite the relevance of diseases
and pests many widely used crop models do not yet account for their effects on crop yields. We present results from a
method development study on crop disease modelling.

The atmosphere is an important medium for transmission of crop diseases and insect pests, such as, for example, fungal
pathogens, insect vectors and migratory pests. Recent advances in massively parallelized GPU computing promise the
potential for substantial performance gains in simulating windborne crop diseases and pests that could facilitate also
advanced coupling of model components and real-time simulations.

We developed and tested different GPU-based implementations of spatiotemporally explicit crop disease models on
landscape to global scales. Our approach is based on customized CUDA C++ implementations for general-purpose GPU
computing, linked with methods from computer graphics (OpenGL) to enable live 3-D visualization of simulation data.
This facilitates substantial speed-up, scalability and flexibility, and it allows for interactive exploratory visual data analysis
of complex feedback between meteorology and pathogen biology during atmospheric transmission.

The prototype for a GPU-accelerated simulation tool that we present allows, for the first time, real-time global-scale
simulation of windborne crop disease transmission with live 3-D visualization of simulation data. We report results from
method development, including performance estimates and validation, focusing on a new atmospheric transport model
dedicated to windborne crop pathogen and pest transmission that can be applied to different crop health threats, such
as cereal rusts and potato late blight, and adapted to different insect pests, such as desert locusts and fall army worm.
The feasibility of coupling the GPU-accelerated atmospheric transport model with stochastic epidemiological models for
simulating complex disease patterns and crop models for yield impact assessments is discussed.

Our results may serve useful as an initial step towards identifying suitable modelling approaches for advancing the
representation of crop diseases and insect pests in crop modeling frameworks.
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Global-scale simulation of windborne crop disease transmission with interactive 3-D visual data analysis

A. AgDisease: graphical user-interface B. test-case: wheat rusts
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Abstract

Model-based assessments of food security risks, future climate change impacts on crop production as well as
digital farming require adequate simulation of crop production at different spatial scales. In many cases, process-based
1-D simulation models are used for this purpose and extended to varying spatial domains. Usually, the temporal and
spatial resolution of the simulations depend on the availability and resolution of weather data as well as soil and crop
management information. In the case of soil information, various data sources are available with different horizontal
and vertical spatial resolution as well as recorded soil properties.

The aim of this presentation is to review the sensitivity of crop models to different sources of soil information
as found in the literature from regions in Europe as well as in Africa. Therefore, at first, the content of different sources
of soil information with respect to their content and spatial resolution is compare and, secondly, the effect of the use of
different data sources and resolutions on simulated crop yield is evaluated for different regions in the world

In most cases, soil information has been gathered from field campaigns (reference or ground truth) as well as
from secondary soil data with varying spatial resolution. Then the soil information from the different sources has been
used as input to crop yield simulations over several years with different field scale crop models combined with the same
weather and management information. Simulation results were compared with respect to their simulated mean crop
yield as well as their yield stability.

An example of the effect of different spatial resolution of soil information on mean simulated crop yields is
shown in Figure 1.
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Figure 1. Relative mean absolute error (rMAE) of simulated silage maize yield for different spatial resolutions of soil input data and years with
different weather conditions. Boxplots show the rMAE calculated from n = 11 crop models (middle line indicates the mean rMAE across
models, whiskers are Tukey style and extent to 1.5 times the interquartile range) (Hoffmann et al. 2016)
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Implications for the assessment of the impact of climate change or of crop management scenarios at regional are
discussed.
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Introduction

Traditional crop models can be adapted to regional scales for climate impacts analysis but are limited by skill in
modelling phenology (Challinor et al., 2018). Phenology parametrisations are generally based on growing degree days
(GDD) and temperature response functions. Disagreement on response functions has previously led to uncertainty in
predictions and data scarcity continues to limit progress. Accordingly, we present a new method developed using the
phenology database of the German Weather Service (DWD, Kaspar et al., 2014), the largest open-source maize
phenology dataset in the world. We present challenges and progress in transferring learning beyond German
conditions.

Materials/Methods

We compare two methods to improve GDD models for regional scale maize phenology using temperature response
functions: (1) the expected thermal response derived from probability theory and (2) neural networks (NNs).

The ERAS product (Hersbach et al., 2020) was used as input data. 26,208 anthesis observations from the DWD were
used for calibration, the last three years of which (2022, 2023, 2024) were withheld for evaluation. Benchmark: A GDD
model was applied with both piecewise linear and curvilinear Wang-Engel response functions (Wang et al., 2017).

Method 1: The expected thermal response (ETR) refers to estimation of the mean of the response function over finer
scale spatial variation in a grid cell (instead of applying the response function to the mean temperature). The ETR was
calculated by numerically integrating existing response functions against a probability density function. The ETR was
tested in a GDD model.

Method 2: NNs were used to replace both the response function (as in van Bree et al., 2025) and separately the
accumulation step of a GDD model. Maximum and minimum daily temperature, photoperiod and vapor pressure
deficit were included as features in the NN response function.

Results and Discussion

e All models performed similarly (R* approx. 0.3 - 0.4) when fully calibrated, but calibration often implied
implausible parameter values;

e The ETR was optimal at more physically feasible cardinal temperatures (T_opt 26.7°C) than the benchmark
model (T_opt 22.2°C);

¢ NNs gave a physically implausible response function outside the range of temperatures in the dataset.

When cardinal temperatures were taken from the literature, the ETR performed better (R? 0.39) than the benchmark,
where no variance was explained (Figure 1, right panel). Unlike the ETR (model standard deviation 8.9 days), the
benchmark produced an overly dispersive model (model standard deviation 11.3 days) - it underestimated low
flowering times and overestimated high flowering times.
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When the benchmark was optimised to the data, the function had a gentler gradient for higher temperatures. The ETR
had a similar shape and performance, but was derived from existing crop modelling knowledge, so should perform
better out of sample (Figure 1, left panel).

Neither the NN response function nor the NN accumulation improved on the benchmark or ETR GDD model (Figure 1,
right panel). Temperature described most of the variation in the NN response. The NN response was positive for low
temperatures and did not decrease above feasible optimal temperatures, so did not always align with physical intuition
(Figure 1, left panel). Most daily temperatures (98%) were between 7 and 26°C, so NN response functions may suffer
from over-fitting outside these regions. Both NN models had lower spread than the GDD models (model standard
deviation 6.3 and 7.0 days for the NN response and NN accumulation respectively).
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Figure 1. Left panel: Temperature response curves of Wang et al., 2017 (blue) and ETR (red) compared to a neural network response function
(shaded grey). The Wang curve and ETR are more physically plausible outside the range of temperatures in the dataset (99t percentile = 26°C).
Right panel: Skill scores for the different models on the DWD maize phenology database years 2022-2024. The plot is divided by whether models
used the response curve of Wang et al. with parameters from the literature.

Conclusions

The ETR performs as well as existing and NN-based response functions but aligns better to laboratory experiments.
Improvements in model performance are often accompanied by reductions in variance, a trend which could be
attributed to the data averaging effect.

The DWD database is large enough to train complex neural networks but is limited by the range of temperatures in
Germany. Given the size of the dataset, we expect indications about the shape of response curves to be reliable, but
estimations of optimal temperature to be less conclusive.

We conclude with progress and challenges in implementing the ETR on a broader scale, drawing on transfer learning
methodologies. We propose integration of crop modelling knowledge into machine learning as the best way to address
data scarcity issues.
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