
 
 

 

 

  



 
 

 

Scien&fic and Methodological Advances in Crop Modelling  

 

Bridging chlorophyll content and ver2cal nitrogen distribu2on for accurate canopy photosynthesis simula2on 

 

Accurate simula2on of canopy photosynthesis is essen2al for predic2ng dry ma9er accumula2on and crop yield. 
However, most current crop models overlook the effect of ver2cal distribu2on of leaf nitrogen and chlorophyll content 
on photosynthe2c capacity at different canopy layers, resul2ng in greater uncertain2es and weaker mechanis2c 
explana2on. Here, we developed a novel canopy photosynthesis model that establishes a bridge between chlorophyll 
content and photosynthe2c nitrogen (PN, defned as total leaf nitrogen minus non- photosynthe2c nitrogen) across 
different canopy heights, and then employs chlorophyll content as a reliable proxy forsimula2ng photosynthesis. The 
model was calibrated and validated using data from fve feld experi-ments under diverse treatments. Results indicate 
that leaves at higher canopy posi2ons, receiving more light, contain higher nitrogen content and chlorophyll to support 
greater photosynthe2c rates. The nitrogen ex2nc2on coeffcient (KN), which characterizes the decline in available of leaf 
nitrogen, decreases exponen2ally with increasing LAI, varying among canopy depths, cul2vars and growth stages. 
Chlorophyll shows a stronger cor-rela2on with photosynthesis compared to leaf nitrogen. By capturing these dynamics, 
the model enhances the accuracy of photosynthesis predic2on by 60%, par2cularly correc2ng the overes2ma2on of 
canopy photosyn-thesis and dry ma9er accumula2on during post-fowering. These fndings advance the understanding 
and modelling of canopy-scale photosynthesis in crop models and provide insights for be9er integra2on with 
chlorophyll-related remote sensing data. 
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Introduc8on 

     Computer vision-based algorithms and sensing plaPorms are increasingly used in phenotyping research, enabling 
automated detec2on of pests and diseases and the quan2fica2on of physiological parameters such as leaf area index, 
biomass, and yield (Tanaka et al., 2024). However, these approaches are highly data hungry, and relying solely on ground-
truth data for model training is costly. While data augmenta2on and self-supervised learning can improve robustness in 
object detec2on, genera2ng biophysiologically meaningful synthe2c data for quan2ta2ve predic2ons, such as 
physiological traits, remains challenging. 

     Three-dimensional (3D) sensing technologies including structured light, stereo, 2me-of-flight cameras, and LiDAR 
have become standard tools in plant phenotyping, offering richer canopy structural informa2on than conven2onal 2D 
imaging (Akhtar et al., 2024). This provides opportuni2es for studying crop compe22veness and complementarity under 
complex condi2ons such as intercropping. However, 3D approaches demand even larger datasets, which increases the 
difficulty of applying advanced computer vision models at scale. 

     To address this challenge, recent studies have used process-based crop models as data generators for training 
machine learning algorithms, producing biophysiologically meaningful outputs across diverse environmental and 
management scenarios (Maestrini et al., 2022). Extending this concept, func2onal structural plant models (FSPMs) 
simulate 3D crop architecture and light interac2ons, offering the ability to render synthe2c canopy data while retaining 
physiological realism (Baker et al., 2023). 

     This study evaluates the poten2al and limita2ons of FSPM-based synthe2c data genera2on for AI-driven applica2ons 
by comparing rendered canopy structures with 3D point cloud data collected from faba bean–oat intercropping systems 
using depth cameras. 

Materials and Methods 

     A field trial was conducted in 2025 at Flakkebjerg, Aarhus University (55°32ʹ N, 11°39ʹ E). Faba bean (Vicia faba) and 
oat (Avena sa2va) were intercropped and sown on 1 April 2025 at densi2es of 34 plants m⁻² for faba bean and 90 plants 
m⁻² for oat. Both species were sown within the same row at 25-cm spacing. Each plot measured 2.5 m × 8 m. Three-
dimensional (3D) point cloud data were collected using a 2me-of-flight camera (Helios2 Ray, LUCID Vision Labs, Burnaby, 
Canada) with a spa2al resolu2on of 0.3 MP (640 × 480 pixels). The camera was posi2oned approximately 0.8 m above 
the canopy, capturing a region of interest of at least 0.5 m × 0.5 m (covering two rows by 0.5 m). This sampling area was 
assumed to represent a single training unit for future deep learning applica2ons.  

     Synthe2c 3D canopy data were generated with the Virtual Plant Laboratory (VPL v0.0.6; Alejandro et al., 2025) 
implemented in Julia v1.10. Compared with other FSPM plaPorms (e.g., GroIMP, OpenAlea), VPL allows the complete 
modelling workflow (structure defini2on, simula2on, visualiza2on) within one language, benefi2ng from Julia’s speed 
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and flexibility. The simula2on of legume–cereal intercropping systems was based on the publicly available script 
BASIC_CEREAL_LEGUME (h9ps://git.wur.nl/david.ko9elenberg/fspm_vpl_dk/-/tree/BASIC_CEREAL_LEGUME) with 
minor modifica2ons to the ini2al spa2al arrangement of the two crops. VPL originally outputs canopy structure as 
polygon meshes in ply format. To match the format of field data, these meshes were converted into point clouds using 
the Python library open3d, assuming the depth camera was posi2oned above the canopy as in the field experiment. 
Only visible points from the mesh surface were sampled to account for occlusion effects within the canopy. Finally, 
voxeliza2on was applied to harmonize the spa2al resolu2on of synthe2c data with that of the Helios2 Ray camera. 

Results and Discussion 

     Synthe2c data from FSPM were visually compared with real 3D point cloud data collected by a depth camera. The 
FSPM successfully generated rendered 3D canopy structures as polygon meshes (Fig. 1a), which were subsequently 
converted into point cloud data (Fig. 1b). The dis2nc2on between broad legume leaves and narrow cereal leaves was 
clearly visible in the synthe2c data. In contrast, the real point cloud data were affected by canopy occlusion (Fig. 1c), and 
occasional dead pixels appeared in the upper canopy layers (Fig. 1d), likely caused by strong solar illumina2on beyond 
the capacity of the depth camera. Moreover, the real 3D data captured smoother surface curvature of leaves, sugges2ng 
that the current FSPM outputs lack some textural realism.  

     Bridging the gap between synthe2c and real data is therefore cri2cal for enabling the effec2ve use of FSPM-based 
data in AI applica2ons. One approach is to calibrate FSPM parameters against field observa2ons to be9er approximate 
realis2c canopy geometry, par2cularly in cases where growth balance between legumes and cereals diverges from virtual 
representa2ons. Another promising direc2on is the use of genera2ve adversarial networks (Goodfellow et al., 2020) to 
enhance realism by producing synthe2c point clouds that mimic field-acquired data. 

 
Figure 1. Examples of intercrop canopy data. Synthetic data generated by the functional–structural plant model (FSPM): (a) rendered 3D virtual 

intercrops and (b) corresponding synthetic point clouds. Real field data acquired with a depth camera: (c) raw point clouds from an oblique view 
and (d) raw point clouds from a top-down view. In subfigures (b–d), the color gradient from grey to black represents the distance from the sensor. 

Conclusions 

     Although this study demonstrates the poten2al of genera2ng synthe2c data using FSPM, a substan2al gap remains 
between synthe2c and real 3D point cloud data. The impact of this gap on the accuracy and robustness of predic2ng 
crop physiological parameters, such as biomass and leaf area index, in intercrops will be examined in future work using 
deep learning models. 
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Introduc8on 

Potato is one of the most widely grown and most produc2ve crops in the world. Its nutri2onal and economic value 
depend on yield quan2ty (tonnes ha-1) and tuber quality (e.g., dry ma9er concentra2on and tuber size distribu2on). 
Climate change and legisla2ons aimed at reducing nitrogen (N) pollu2on are expected to affect potato produc2on 
(George et al., 2017; Martnez-Dalmau, 2021). Crop growth modelling plays an important role in iden2fying adapta2ons 
to these changing condi2ons, as it provides a means of simula2ng crop growth in a projected future climate or with 
amended management. Although potato crop growth models (CGMs) are useful for decision support by es2ma2ng 
poten2al and resource-limited yields (MacKerron and Haverkort, 2023), tuber quality simula2ons are currently 
insufficiently accurate. Tuber quality characteris2cs are affected by factors such as drought and N availability, and effects 
differ between cul2vars (Aliche et al., 2019). The current, ongoing project aims to 1) run experiments to generate data 
on tuber quality as affected by drought and N availability and 2) develop a module to capture tuber quality development 
in the exis2ng CGM World Food Studies (WOFOST). 

Materials and Methods 

In 2024 and 2025, large-scale field experiments were performed in two loca2ons in the Netherlands to follow tuber yield 
and quality development over 2me. The experimental design included combina2ons of three irriga2on levels, four N 
rate levels and 20 cul2vars, which differed in maturity type (i.e., early to late). Auer tuber ini2a2on, plots were harvested 
four (2024) or five (2025) 2mes throughout the season. At each harvest moment, fresh yield and DM concentra2on of 
each sample were determined, as well as the size dimensions (i.e., diameter, length, width, height) of each individual 
tuber.  

Modelling approach 

Data acquired in the field experiments suggest that DM concentra2on and tuber size are affected by water and N 
availability throughout the season. These data will be used to develop a tuber quality module that simulates tuber size 
and tuber DM concentra2on. To this end, WOFOST will be used to simulate tuber growth which will be incorporated in 
the model structure of WOFOST (Figure 1). WOFOST simulates the poten2al and water- and nutrient-limited tuber DM 
yield based on weather and soil data. The tuber quality module will simulate tuber DM concentra2on and tuber number 
as affected by water and N availability. From tuber DM yield and DM concentra2on, the fresh ma9er (FM) yield can be 
calculated. From FM yield and tuber number, the average tuber size will be calculated and a size distribu2on will be 
applied to this fresh weight to derive the fresh marketable tuber yield. 
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The proposed tuber quality module will be developed with data-driven, empirical insights. It serves as a first step towards 
the development of a mechanis2c tuber quality module. To evaluate and further improve the module, more detailed 
measurements will be done in following field trials in 2026 and 2027.  

 
Figure 1: Overview of the modelling approach to simulate marketable yield from the output of the World Food Studies (WOFOST) model. The scheme 
is simplified and adapted from De Wit et al. (2019). The red box indicates the tuber quality module that is to be added to WOFOST. The grey, dotted 
arrows indicate the relations that are to be quantified from the acquired data. 
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Introduc8on 

Historically, plant breeders advanced crops through phenotype-based selec2on and pedigree-based best linear 
unbiased predic2on (BLUP), but these methods rely on long breeding cycles, extensive phenotyping, and limited ability 
to capture Mendelian sampling or linkage disequilibrium. The decline in genotyping costs has shiued this balance, 
enabling genome-wide marker profiling at scale and crea2ng an opportunity to accelerate breeding through genomic 
predic2on (GP). Since its introduc2on, GP has allowed earlier and more accurate selec2on, with gBLUP becoming a 
widely adopted implementa2on that uses genomic rather than pedigree-derived rela2onships to improve predic2ve 
ability. While gBLUP has consistently outperformed pedigree-based predic2on across many crops, it does not model 
genotype x environment interac2ons, thus limi2ng accuracy when genotypes are evaluated in new produc2on 
condi2ons. Extensions such as mul2-environment and reac2on-norm models incorporate environmental covariates to 
capture genotype-specific plas2city yet remain fundamentally sta2s2cal and constrained by the informa2on content of 
the data. To overcome these limits, mechanis2c crop growth models (CGMs) explicitly represent physiological processes 
such as phenology and biomass par22oning, allowing in silico evalua2on of genotype performance under diverse 
clima2c and management scenarios. Integra2ng CGMs with GP (CGM-WGP) links marker effects to physiological 
parameters, embedding biological knowledge into predic2on and enabling extrapola2on to novel environments with 
improved interpretability (Technow et al., 2015; Messina et al., 2018, 2022). While ensemble of models is emerging as 
a method to improve predic2ve accuracy (Messina et al., 2025; Cooper et al., 2025), in this study, we first compare 
gBLUP, gBLUP with environmental covariates, and CGM-WGP predic2on methodology to evaluate their predic2ve ability 
for flowering 2me in raspberry, with par2cular focus on the most challenging scenario: predic2ng new genotypes in new 
environments. 

Materials and Methods  

A mul2-environment dataset from a private raspberry (Rubus idaeus) breeding program was used, consis2ng of 
1,840 records for 453 genotypes evaluated across 19 environments (loca2on × years) from 2021–2024. The trait of 
interest, flowering dura2on, was defined as the number of days from plan2ng to first harvest minus 35 days, with 
genotypic means (BLUEs) es2mated separately within environments. Given the highly unbalanced nature of the dataset, 
only genotypes with observa2ons in at least 2 environments and complete metadata, including plan2ng date and 
weather metadata, were retained. Genomic data consisted of genome-wide SNP markers. Daily weather data included 
mean, maximum and minimum air temperature, rela2ve humidity, vapor pressure deficit, and photoperiod. Three 
genomic predic2on approaches were evaluated: (i) baseline gBLUP, (ii) gBLUP with environmental covariates, and (iii) a 
linear crop CGM-WGP framework implemented with the Ensemble Smoother with Mul2ple Data Assimila2on algorithm 
(ES-MDA). Predic2ve ability was assessed under four robust breeding-relevant cross-valida2on (CV) scenarios, where 



 
 

 

each scenario was implemented as 10 replicates of 5-fold cross-valida2on (CV2 - known gene2cs, known environments; 
CV1 – new gene2cs, known environment; CV0 – known gene2cs, new environments; CV00 – new gene2cs, new 
environments) using correla2ons between observed and predicted flowering 2me. 

Results and Discussion 

In CV2, the predic2ve ability of gBLUP models was excep2onally high (0.920–0.929), while the predicitve ability 
of CGM-WGP was lower (0.844), a decrease of 8.26%. In CV1, accuracies remained high for gBLUP apporaches (0.903–
0.909) but lower for CGM-WGP (0.832), showing that sta2s2cal approaches excel when both genotypes and 
environments are represented in the training set. In CV0, however, gBLUP predicitve ability dropped substan2ally (0.527–
0.546), whereas the CGM-WGP approach achieved an accuracy of 0.703, a 31% increase rela2ve to the baseline gBLUP 
model. The clearest separa2on emerged in CV00, where gBLUP models predic2ve ability fell to 0.295–0.350 while CGM-
WGP reached a median predic2ve ability of 0.577, more than doubling predic2ve ability of any gBLUP-based approaches 
(+65% gain). These results demonstrate a consistent pa9ern: gBLUP excels in interpola2on (CV2, CV1) but loses power 
as novelty of the predic2on scenario increases (CV0, CV00). By contrast, CGM-WGP maintains accuracy in the face of 
novel gene2cs and environments, leveraging physiological informa2on to extrapolate beyond the observed data. The 
par2cularly strong CV00 performance emphasizes its breeding relevance, since predic2ng new genotypes in untested 
environments is the central challenge in forward-looking selec2on. Overall, these findings highlight the promise of 
physiology-based models as a pathway toward more reliable genomic predic2on under climate change and expanding 
target popula2ons of environments. Future research should focus on op2mizing the model collec2ve within the diversity 
theorem framework to maximize predic2on accuracy (Messina et al., 2025). 

 
Figure 1. Predictive ability of five genomic prediction model types across 50 cross-validation analyses. Predictions were evaluated under four 

breeding scenarios: CV2 – known genotypes, known environments; CV1 – new genotypes, known environments; CV0 – known genotypes, new 
environments; and CV00 – new genotypes, new environments. Boxes show the interquartile range (25th–75th percentile), with the median 

indicated by the central line. Whiskers extend to ±1.5 × IQR, and points denote correlations outside this range (outliers). 
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Accurate crop phenology modeling plays a vital role in modern agriculture by enabling farmers to manage risks and 
op2mize produc2vity. Since 2021, BASF’s Digital Farming business unit has adopted machine learning (ML) techniques 
to enhance the scalability and efficiency of phenology model deployment. However, ML models require large volumes 
of high-quality data, and data gaps—ouen caused by inconsistent sampling and environmental biases—pose significant 
challenges to model robustness. 
This paper introduces a novel data augmenta2on strategy to synthe2cally generate phenology data for German winter 
wheat, addressing data gaps caused by shius in plan2ng windows. We analyzed historical phenology records to iden2fy 
key features, revealing a strong correla2on between plan2ng dates (expressed as day-of-year) and the number of days 
auer plan2ng (DAP) required to reach specific growth stages. To account for interannual weather variability, we 
performed cluster analysis to iden2fy historical seasons with winter condi2ons similar to those of the 2024–2025 
season. The 2020–2021 season emerged as the most comparable and was used to build linear regression models 
predic2ng DAPs for each growth stage based on plan2ng date. 

Using these models, we generated synthe2c phenology data to fill gaps caused by the late plan2ng in the 2024–2025 
season—an environmental condi2on underrepresented in the exis2ng training data. Incorpora2ng this augmented 
dataset into the training pipeline significantly improved in-season predic2on accuracy. The enhanced model achieved a 
10% increase in 5-day-error accuracy, demonstra2ng the effec2veness of synthe2c data in bridging phenological data 
gaps and improving model performance. 

 

 

Figure 1: Days required to reach the same growth stage decrease with delayed plan2ng. This plot also demonstrates 
accelerated crop development of 2024/2025 season due to late plan2ng and unique winter2me weather condi2ons. 



 
 

 

 

 

References: 

Riedesel et al, 2023, PLoS One. e0288202 

Rezaei et al, 2018, Sci Rep. 4891 

Qin et al, 2018, Agron. J. 110:2596–2607 

Chen et al, 2016, Proceedings of the 22nd ACM SIGKDD InternaPonal Conference on Knowledge Discovery and Data Mining, 785-794  



 
 

 

 

vLeaf@DSSAT: Integra&ng Two-Leaf Sun–Shade Photosynthesis and Energy Balance into CERES-
Maize 

Srivastava Antriksh* 

Indian Ins_tute of Technology Madras, Department of Civil Engineering, Chennai, India, srivastava.antriksh96@gmail.com  
 

Keywords: Photosynthesis, Transpira2on, Leaf energy balance, Stomatal Conductance, DSSAT 

Introduc8on  

The global popula2on is expected to exceed 9 billion by 2050, requiring a 60–100% increase in food produc2on (FAO, 
2021; Long, 2025). Agronomic advances to meet rising food demand have already increased agricultural water use, while 
freshwater resources remain stagnant and, in many cases, are declining (Rodell et al., 2018). Therefore, future yield gains 
must be pursued in parallel with improvements in crop water-use efficiency (WUE). A recent modelling study for C4 
maize leaves showed that reducing stomatal conductance (gs) in C4 leaves can improve WUE without compromising 
photosynthesis (Srivastava et al., 2024). However, the analyses remain limited to the leaf scale and do not capture the 
implica2ons on canopy growth and yield since plant-scale processes are required to resolve these interac2ons. Yet, 
current crop models offer only par2al solu2ons: CROPGRO includes stomatal regula2on but is restricted to C3 legume 
crops, and CERES-Maize lacks a biochemical photosynthesis module. While an APSIM modelling framework by Wu et al. 
2019 allows modelling for both C3 and C4 crops along with a biochemical photosynthesis module, it lacks considera2on 
of leaf energy balance (assumes leaf temperature (Tleaf) = air temperature (Tair)). This omission is cri2cal because gs 
reduc2on lowers transpira2on and increases Tleaf, altering enzyme kine2cs, canopy energy balance, and poten2ally crop 
growth (Srivastava et al., 2024). To address this gap, we present a new cross-scale framework that couples the DSSAT 
CERES-Maize model with vLeaf, a process-based leaf model. Within this framework, a two-leaf (sunlit–shaded) 
representa2on of the canopy is implemented, capturing canopy scale fluxes with reasonable accuracy and enabling two-
way interac2ons between DSSAT and vLeaf. This integra2on allows biochemical processes simulated at the leaf scale, 
such as including photosynthesis, stomatal conductance, boundary layer conductance, and energy balance, to 
dynamically influence crop growth and development, while the crop state simulated in DSSAT constrains diurnal leaf-
level processes.  

Materials and Methods 

 

Figure 1. Coupling DSSAT CERES-Maize with vLeaf to integrate leaf-scale gas exchange and energy balance with crop growth.  

vLeaf (Biophysical model) Srivastava et al., 2024
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We use an open-access Python library, pyDSSATTools, to run a modified DSSAT (v4.8) executable that integrates the 
DSSAT crop growth model with the vLeaf (Figure 1). In addi2on to incorpora2ng vLeaf outputs into DSSAT simula2ons, 
the framework also stores them in a separate output file, allowing deeper insights into crop-scale feedbacks. CERES-
Maize (Jones & Kiniry, 1986) simulated crop state variables in DSSAT, including leaf area index (LAI), soil water, nitrogen 
status, and phenology. The vLeaf module then computes hourly assimila2on and transpira2on rates for sunlit and shaded 
leaf area based on their respec2ve absorbed radia2on (Spi9ers, 1986; Campbell and Norman, 1998). The leaf model 
vLeaf (Srivastava et al., 2024) incorporates four coupled submodels: (i) a biochemical model of C4 photosynthesis (von 
Caemmerer, 2000), (ii) a modified Ball–Berry stomatal conductance model (Leuning, 1990), (iii) a leaf boundary-layer 
conductance model (Nikolov et al., 1995), and (iv) an energy balance solver for steady-state Tleaf (Nikolov et al., 1995). 
The two-way coupling works by having vLeaf simulate the poten2al diurnal carbon uptake and transpira2on for sunlit 
and shaded leaves, with DSSAT root water uptake constraining the transpira2on demand. vLeaf is then rerun with this 
water stress, upda2ng leaf energy balance, Tleaf, gs, and net assimila2on (Anet), which is passed back to DSSAT to compute 
biomass accumula2on and update plant status for the next day. 

Results and Discussion 

Simula2ons were conducted to evaluate the consequences of neglec2ng leaf energy balance under contras2ng 
temperature condi2ons. Simula2ons under cooler (–3 °C) and warmer (+3 °C) environmental condi2ons, rela2ve to the 
US Midwest, revealed substan2al seasonal differences in carbon gain and water use predicted by the vLeaf model. 
Omi{ng energy balance (Tleaf = Tair) results in the cumula2ve carbon gain being underes2mated by 10% in cooler 
condi2ons and 1% in warmer condi2ons. However, a much greater effect is observed on crop water usage. Cooler 
environments show a 29% underes2ma2on in water demand, while warmer condi2ons show a 6% overes2ma2on of 
transpira2on water demand. Such biases have important implica2ons for seasonal predic2ons and tes2ng the WUE gains 
in hybrid crops. For instance, an underes2ma2on of water use may mask the severity of drought stress or the true costs 
of water-saving strategies, and an underes2ma2on of yield may misguide breeding or management decisions aimed at 
improving crop performance. This is par2cularly cri2cal when evalua2ng climate-resilient strategies such as stomatal 
manipula2on, where reduced gs improves WUE at the leaf scale but simultaneously increases Tleaf, which can alter 
physical canopy processes and plant biochemical processes. Neglec2ng this feedback could lead to misleading 
conclusions about the benefits of trait-based crop improvement. By explicitly resolving energy balance, the framework 
will capture both direct and indirect effects of any physiological modifica2on, providing a more reliable basis for 
assessing WUE and yield outcomes under diverse environmental condi2ons. 

Conclusions  

The DSSAT–vLeaf framework highlights the importance of explicitly represen2ng leaf energy balance in cross-scale crop 
modeling. Neglec2ng this process introduces significant errors in carbon gain and water use. Integra2ng energy balance 
provides a more reliable founda2on for evalua2ng WUE and yield-improving strategies.  
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Introduc8on  

Root hydraulic conductance (Lp) relates water flow with the decrease in water poten2al from the soil to the leaf. 
Stomatal conductance models based on water poten2al are essen2al parts of models of the soil-plant-atmosphere 
con2nuum (SPAC) (Garcia-Tejera et al., 2017). Recent advances in the measurement of tree water poten2al using 
microtensiometers (Pagay et al. 2014) allowed quan2fying the diurnal evolu2on of root conductance in young olive 
trees (Villalobos et al., 2025). 

Here, we report root hydraulic conductance data in irrigated adult olive trees in Cordoba (Spain) obtained with 
measurements of sap flow and sapwood water poten2al. 

Materials and Methods  

The experiment was performed in a drip-irrigated olive orchard at the Ins2tuto de Agricultura Sostenible of Cordoba 
(Spain) during 2024. Sap flow was measured with the Compensated Heat Pulse- Average Gradient (CHP-AG) method 
(Tes2 et al. 2009). Sapwood water poten2al was determined with microtensiometers (FloraPulse Co., Davis, CA, USA). 
Measurements were performed in 5 trees, though here we will only present data from a single tree of cul2var “Picual”. 

 

Results and Discussion  

The 2me course of sap flow, sapwood water poten2al at the trunk base, and calculated resistance were similar to those 
shown in Fig. 1 for a tree of cul2var “Picual” for two dates - spring and full summer - with clear sky. Some pa9erns are 
common for the two curves: maximum sap flow peaks during 2-3 hours auer noon, minimum water poten2al occurs 
later than that, hydraulic conductance is maximum in the early morning and decreases during the day2me, being very 
low at night. This day/night difference was also found by Villalobos et al. (2025) with young trees. In May, we find a lower 
sap flow, higher poten2al and higher hydraulic conductance. The decrease in conductance in summer is the result of 
irriga2on not mee2ng the water requirement, which is also shown by the lower pre-dawn water poten2al (Fig. 1).  

 

Conclusions 

Hydraulic conductance varied during the day2me and was very low at night. Day2me values of conductance decreased 
during the summer.  



 
 

 

 
. 

  

Figure 1. Time course of sap flow, sapwood water potential and hydraulic conductance of an olive tree cv. “Picual” on 2 May (left)and 28 August 

(right) 2024. 
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Introduc8on  

The explicit representa2on of soil organic ma9er (SOM) frac2ons in crop models is essen2al to capture their contras2ng 
stability, turnover rates, and sensi2vity to management and soil texture. Tradi2onal three-pool SOM structures provide 
only a simplified representa2on and do not explicitly separate par2culate organic ma9er (POM), linked to short-term 
residue turnover, from mineral-associated organic ma9er (MAOM), which represents long-term stabiliza2on. This 
dis2nc2on is par2cularly relevant when assessing management effects, since 2llage, residue reten2on, and soil texture 
strongly modulate the balance between POM and MAOM. Therefore, tes2ng a mechanis2c POM–MAOM module 
provides an opportunity to improve the process-based representa2on of SOM dynamics and their links with crop 
performance. 

 Materials and Methods  

We extended the process-based crop model ARMOSA (Perego et al., 2013) with a new module simula2ng POM and 
MAOM according to the Microbial Efficiency-Matrix Stabiliza2on (MEMS) framework. The module links residue 
decomposi2on, microbial turnover, and stabiliza2on/desorp2on processes. The evalua2on used long-term data from 
two sites in northern Italy with contras2ng textures: Landriano (silty loam) and Piacenza (silty clay). At Landriano, three 
management systems were compared (conven2onal 2llage, semi-conserva2ve, and no-2ll), while Piacenza included two 
(conven2onal and no-2ll). The Landriano trial, started in 2023, follows a biennial silage rota2on of maize, winter barley, 
and soybean, with cover crops under no-2ll. The Piacenza trial, established in 2013, adopts a four-year rota2on of double 
maize, wheat, and soybean, also with cover crops under no-2ll. Observed SOC frac2ons were used to evaluate model 
performance for POM and MAOM, while ancillary crop variables (LAI, aboveground biomass, yield) were simulated to 
ensure consistency of the crop–soil system. For independent tes2ng, calibra2on used conven2onal and no-2ll in 
Landriano and two thirds of the years in Piacenza; valida2on used the semi-conserva2ve system in Landriano and the 
remaining years in Piacenza. Calibra2on followed a stepwise approach, combining automa2c op2miza2on with trial-and-
error refinements, star2ng from soil water and crop variables and extending to soil mineral N and SOC frac2ons. 

Results and Discussion  

Results showed that the model reproduced the main temporal pa9erns of both SOM frac2ons and crop growth, with 
the best performance at Landriano (Figure 1). Model–data comparison at Landriano showed variable agreement across 
frac2ons, with high d-index values for MIC (0.62–0.98) and SOCtot (0.71–0.88), moderate agreement for MAOM (0.61–
0.66), and lower performance for POM and DOC (0.44–0.49 and 0.44–0.82, respec2vely). The weaker agreement for 



 
 

 

POM and DOC reflects their intrinsically higher spa2al and temporal variability, which makes these frac2ons more 
difficult to capture consistently in both field measurements and simula2ons. These findings demonstrate the capacity of 
the new ARMOSA module to capture management and texture effects on SOM frac2on dynamics while maintaining 
robust performance on crop variables, thus strengthening confidence in its process-based representa2on. 

 
Figure 1. SOC pools of the soil layer 0 to 30 cm in calibration (conventional and no till) and validation (semi-conservative) datasets of the Landriano 

site 
Table 1. Fitting indices for SOC and SOC pools in calibration (conventional and no till) and validation (semi-conservative) datasets of the Landriano 

site 

"component" "group" "RRMSE" "d" 

"SOC[tot]" "calibration" 3.84 0.71 

"SOC[tot]" "validation" 3.51 0.88 

"MIC" "calibration" 11.59 0.62 

"MIC" "validation" 2.05 0.98 

"DOC" "calibration" 12.44 0.44 

"DOC" "validation" 4.63 0.82 

"POC" "calibration" 19.41 0.44 

"POC" "validation" 18.94 0.49 

"MAOC" "calibration" 4.21 0.61 

"MAOC" "validation" 5.45 0.66 

 

 



 
 

 

Conclusions  

The explicit representa2on of POM and MAOM in crop models represents a step forward compared to tradi2onal three-
pool SOM structures, providing a more mechanis2c understanding of SOM stabiliza2on processes and their responses 
to management and soil texture. 
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Introduc8on  

Dry beans (Phaseolus vulgaris L.) are the second most important food legume worldwide, auer soybeans, contribu2ng 
significantly to human diets due to their high protein content (Takeoka et al., 1997). Despite this global importance, dry 
beans remain a rela2vely new crop in Germany, where legumes account for only 1.8% of arable land. In 2021, the average 
per capita bean consump2on was 2.2 kg, with kidney beans being the most consumed type in the country. The gap 
between consump2on and domes2c produc2on reflects Germany’s strong dependence on imported protein crops, with 
roughly one-quarter of its feed protein being imported (BLE, 2020). Expanding bean cul2va2on in Germany is therefore 
strategically crucial for reducing reliance on imports, enhancing local food and plant-based protein security, while 
contribu2ng to climate mi2ga2on goals. However, bean cul2va2on has not been widely tested under German condi2ons, 
and no official genotype recommenda2ons exist. Process-based crop models such as DSSAT CROPGRO-Drybean provide 
valuable tools for evalua2ng genotype×environment×management interac2ons. Originally developed and validated in 
tropical and subtropical regions (Hoogenboom et al., 1994; Melo et al., 2011), CROPGRO-Drybean has been successfully 
calibrated for diverse environments, yet its applica2on in temperate Europe remains limited. Simula2ng kidney bean 
growth under Southern German condi2ons offers an opportunity to assess adapta2on poten2al and generate insights 
for management strategies that support sustainable crop diversifica2on. Due to the compara2vely limited research 
investment in minor crops such as kidney bean, conduc2ng extensive mul2-site and mul2-year field trials ouen proves 
unfeasible. Crop models are effec2ve tools for tes2ng a wide range of hypothe2cal scenarios and management op2ons, 
thereby obvia2ng the need for costly and 2me-consuming field experiments. The objec2ve of this study was to calibrate 
and test the CROPGRO-Drybean model for kidney bean under Southern German condi2ons. 

Materials and Methods  

The DSSAT CROPGRO-Drybean model (version 4.8.5; Hoogenboom et al., 2024) was used in this study. The experimental 
site was Ihinger Hof research sta2on of the University of Hohenheim, Southern Germany (48°44ʹ N, 8°55ʹ E, 475 m a.s.l.). 
Two kidney bean cul2vars, Red Kidney and Canadian Wonder, supplied by MyLocalFarm Company (Germany), were 
grown in a field experiment sown on 16 May 2025. The experiment included measurements of phenological 
development stages, biomass accumula2on, and final grain yield. These observa2ons formed the basis for es2ma2ng 
cul2var- and ecotype-specific gene2c coefficients required by CROPGRO-Drybean. Soil profile characteris2cs were 
determined from site-specific analyses, and crop management informa2on was derived from experimental records. 
Together with daily weather data collected at the sta2on, these parameters were used as model inputs. As a star2ng 
point for calibra2on, the DSSAT default cul2var Canadian Wonder (IB0014) was used. The calibra2on process involved 
itera2ve adjustment of ecotype followed by cul2var coefficients to achieve good agreement between simulated and 
observed data for key traits, including flowering, first pod day, and physiological maturity (phenology-related 
coefficients), in-season biomass, and final yield (growth-related coefficients).  



 
 

 

 

Results and Discussion 

The calibrated DSSAT CROPGRO-Drybean model showed overall good agreement between simulated and observed 
values for both kidney bean cul2vars (Table 1) under Southern German condi2ons, based on one year of data. Simulated 
anthesis dates (ADAT) were within 2–10 days of observed values, with a slight tendency to underes2mate anthesis for 
Canadian Wonder. The first pod (PD1T) and physiological maturity date (MDAT) were closely matched between 
simula2ons and observa2ons, indica2ng that the model successfully represents early reproduc2ve development. Grain 
yield was reasonably predicted, with Red Kidney showing a simulated yield slightly higher than the observed yield. At 
the same 2me, Canadian Wonder was slightly overes2mated by the model, sugges2ng that further calibra2on may be 
required to account for cul2var-specific responses under local condi2ons.  

 

Table 1. Comparison of simulated (Sim.) and observed (Obs.) phenological dates and grain yield for two kidney bean cultivars grown at Ihinger Hof, 
Southern Germany, in 2025. ADAT = anthesis date; PD1T = first pod date; MDAT = physiological maturity date. Yield is expressed in kg DM ha⁻¹.  

Cul%var  ADAT  PD1T  MDAT  Grain Yield 

  Sim.  Obs.  Sim.  Obs.  Sim.  Obs.  Sim.  Obs.  

Canadian Wonder  46  56  55 65  96  102  1385 926 

Red Kidney  46  48  55  58  96 101 1344 1296 

 

Simulated leaf area index closely matched observed values, with peak achieved around 45–85 days auer sowing (DAS) 
for both cul2vars (Fig. 1a). For leaf weight, the model accurately reproduced the growth trajectories of both cul2vars, 
with rapid biomass accumula2on beginning around 30 DAS and peaking near 85 DAS (Fig. 1b). The slightly lower d-
sta2s2c for these two traits may reflect greater variability in canopy development. Nonetheless, both cul2vars showed 
similar growth pa9erns, sugges2ng shared responses to environmental condi2ons. Thousand-grain weight simula2ons 
were highly accurate, with the model capturing the 2ming and magnitude of grain filling and maturity (Fig. 1c). The high 
d-sta2s2cs demonstrate reliable model performance in simula2ng final yield outcomes. 

 

Figure 1. Simulated (sim.) and observed (obs.) growth dynamics of two kidney bean cultivars, grown at the Ihinger Hof research station, Germany, 
and modeled using DSSAT CROPGRO-Drybean (v4.8.5). Panels show: (a) Leaf area index, (b) leaf weight, and (c) thousand-grain weight over days 
after sowing (DAS). Model calibration was based on field measurements taken during the 2025 growing season. Final d-statistics are reported for 

each cultivar and trait, indicating model fit. 

Conclusions 

Preliminary results of CROPGRO-Drybean for the Canadian Wonder and Red Kidney cul2vars based on one year of data 
underscore the model’s ability to simulate growth and yield dynamics of kidney beans under Central European 



 
 

 

condi2ons. Key phenological events and pa9erns of biomass accumula2on and par22oning were consistent with field 
observa2ons, apart from stem and pod. Addi2onal data will be used for further tes2ng of the model with respect to the 
weather-related seasonality factor. Overall, these results demonstrate that the model provides a reliable baseline for 
simula2ng kidney bean growth in Germany and could poten2ally be used to op2mize management strategies in future 
studies.  
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Introduc8on  

Nitrogen (N) deficiency leads to a marked reduc2on in the photosynthe2c capacity of crops since Rubisco and the light-
harves2ng proteins involved in photosynthesis account for 60% of the N content in leaves (Sadras et al., 2024). 

Díaz-Espejo et al. (2006) modeled photosynthesis in olive leaves under drought condi2ons. The results showed that the 
reduc2on in photosynthesis capacity was strongly related to the decrease in N content per unit leaf area, rather than to 
other factors such as water deficit. 

Materials and Methods  

N concentra2ons were measured in an experimental olive orchard under ample water and fer2lizer supply including 
different olive varie2es (‘Picual’, ‘Arbequina’, ‘Hojiblanca’, ‘Arbosana’, ‘Cornicabra’, ‘Empeltre’, ‘Frantoio’ and 
‘Cobrançosa’). The resul2ng values were used to es2mate maximum carboxyla2on ac2vity of Rubisco under satura2ng 
condi2ons of CO2 and ribulose biphosphate (Vc,max) and the maximum electron transport rate without light limita2ons 
(Jmax) with the equa2ons proposed by Díaz-Espejo et al. (2006).These two parameters are included in the photosynthesis-
stomatal conductance submodel used in OliveCan (López-Bernal et al., 2018), a process-based model of olive orchards. 
Assuming no genotype effects on the remaining parameters of the photosynthesis-conductance submodel, a simula2on 
experiment was performed to evaluate the effects of cul2var variability in Vc,max and Jmax on the simulated seasonal 
es2mates of gross photosynthesis for a hedgerow olive orchard. 

Results and Discussion  

N concentra2on in olive leaves ranged from 3.61 g N m-2 (‘Cornicabra’) to 4.54 g N m-2 (‘Arbequina’), with sta2s2cal 
differences between cul2vars. Such values resulted in extreme values of Vc,max and Jmax of 83.7-95.0 μmol m-2 s-1 and 137-
168 μmol m-2 s-1, respec2vely. Simula2on results showed average seasonal es2mates of gross photosynthesis ranging 
from 4322 ± 487 g glucose equivalents m-2 y-1 (‘Cobrançosa’) to 4174 ± 414 g glucose equivalents m-2 y-1 (‘Arbequina’) 
(Table 1). This implies that the measured differences in Na between cul2vars led to 3% varia2ons in seasonal gross 
photosynthesis. Although the results of this exploratory analysis must be taken with cau2on, they highlight that future 
studies should explore in greater detail the effect of N availability on photosynthe2c parameters and the interac2on 
between cul2vars and N availability in olive trees. 

 

Table 1. Annual gross photosynthesis simulated with the OliveCan model using Vc,max and Jmax values derived for each cultivar from leaf N 
concentrations 

 ‘Arbequina’ ‘Arbosana’ ‘Cobrançosa’ ‘Cornicabra’ ‘Empeltre’ ‘Frantoio’ ‘Hojiblanca’ ‘Picual’ 

YEAR g m-2 year-1 g m-2 year-1 g m-2 year-1 g m-2 year-1 g m-2 year-1 g m-2 year-1 g m-2 year-1 g m-2 year-1 



 
 

 

Average 4174 4232 4322 4222 4319 4282 4297 4296 

Std. Dev. 414 466 487 466 486 479 482 481 

Conclusions  

Differences in leaf N concentra2on were found among the studied varie2es. According to the simula2ons, 
photosynthesis rates could differ among cul2vars by up to 3% due to the variability in leaf N concentra2on alone.  
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Introduc8on  

Semi-arid croplands are expanding, and drying trends are intensifying, increasing the frequency and severity of water 
stress during cri2cal stages of crop development (Huang et al., 2016). Many process-based crop models underperform 
in these environments. By simplifying stress interac2ons, canopy dynamics, and field heterogeneity, they underes2mate 
drought-induced yield losses and generate uncertain predic2ons in water-limited systems (Webber et al., 2025). For 
broader use beyond research calibra2on, models must remain transparent, parsimonious, and opera2onally deployable. 
Building on the framework of Soltani and Sinclair (2011), we developed a mechanis2c chickpea model tailored for semi-
arid systems. Its core innova2on is a two-threshold soil-water modifier that regulates leaf area development: above an 
upper threshold expansion proceeds, between thresholds it is progressively constrained, and below a lower threshold 
expansion ceases with drought-induced senescence. This physiologically interpretable mechanism links soil water status 
to canopy growth, radia2on capture, and yield forma2on. The model is released as open-source code, ensuring 
reproducibility, extensibility, and opera2onal use, in line with principles outlined by Wallach et al. (2018). 

Materials and Methods 

Model calibra2on was conducted using data from field experiments carried out in a semi-arid region of southern Israel 
(31.333° N, 34.664° E) during 2019–2021. The trials were arranged as randomized complete block designs with six 
replicates. All plots received sprinkler irriga2on during the vegeta2ve phase, followed by differen2al drip irriga2on 
ranging from 0 to 140% of weekly reference evapotranspira2on (ETo). Physiological data (phenology, leaf area index, 
above-ground biomass, and grain yield) were used to parameterize phenological thresholds, leaf area parameters, the 
two-threshold soil-water modifier, radia2on use efficiency, and maximum harvest index. For valida2on, the model was 
applied to 21 commercial chickpea fields cul2vated between 2022 and 2025 in the same semi-arid region, using field-
specific informa2on on sowing, harvest, irriga2on, and yield to test model robustness across contras2ng water regimes. 
Model performance was evaluated using four sta2s2cal indicators: the coefficient of determina2on (R2) which measures 
the propor2on of observed yield variance explained by the model; the Root Mean Square Error (RMSE, t ha-1), which 
quan2fies the average magnitude of predic2on error; the normalized RMSE (nRMSE, %), which expresses RMSE rela2ve 
to the observed mean yield to allow comparison across datasets; and bias (t ha-1), which indicates systema2c over- or 
underes2ma2on by the model. 

 



 
 

 

Results and Discussion 

Calibration on experimental plots (2019–2021) produced R2 = 0.68 and nRMSE = 22.3% for grain yield, while validation 
on 21 commercial fields (2022–2025) reached R2 = 0.78 and nRMSE = 18.7% (Figure 1). These consistent results across 
experimental and farmer-managed conditions highlight the robustness of the model, with performance comparable to 
benchmarks reported by Soltani and Sinclair (2011). Yield variation was primarily explained by the two-threshold LAI 
modifier, underscoring canopy development as the dominant driver of water-stress responses. The model effectively 
differentiated yield under rainfed and deficit irrigation, but its discriminating power declined once irrigation exceeded 
100% of weekly ETo, a limitation also evident in high-yield commercial fields. 
 

 
Figure 1. Simulated vs. observed chickpea yield for calibration (left, 2019–2021) and validation (right, 2022–2025). Calibration points are grouped by 
weekly irrigation as a percentage of reference evapotranspiration (ETo, 0, 50, 75, 100, 125, 140%), averaged across blocks, giving 17 treatment-year 
combinations (five levels in 2019; six in 2020; six in 2021). Validation includes 21 commercial chickpea fields, each represented as an individual point. 
The dashed line indicates the 1:1 reference. Performance metrics (R², RMSE [t ha⁻¹], nRMSE [%], bias [t ha⁻¹]) are reported per panel.  

Conclusions 

This study shows that yield variability in semi-arid chickpea systems can be captured by a simple, physiologically based 
canopy modifier linking soil water status to leaf area development. By targe2ng a key driver of yield forma2on, the model 
demonstrated robust performance across both experimental trials and commercial fields. Its open-source R 
implementa2on ensures transparency, reproducibility, and adaptability, suppor2ng use in research as well as opera2onal 
decision-making under water-limited condi2ons. More broadly, the results highlight the value of parsimonious 
mechanis2c approaches for advancing crop modeling and strengthening the resilience of semi-arid agriculture. 
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Introduc8on 

The reliability of crop models is ouen threatened by problems dealing with the robustness of parameteriza2ons. Ideally, 
model parameters should only reflect morphological and physiological characteris2cs of specific genotypes. However, in 
most cases, the parameteriza2on is hindered by unfavorable rela2onships between the number of observa2ons and the 
number of parameters to be calibrated. This may lead to include, in parameter values, site-specific factors (e.g., weather 
condi2ons) which can compromise the model capability to simulate growth and development under condi2ons different 
from those explored during the calibra2on. 

Good prac2ces suggest running sensi2vity analysis, measuring as many parameters as possible and calibra2ng only a 
number of parameters (for which measurements are unavailable) which should be small compared to the number of 
observa2ons (possibly on different state variables) available to es2mate the objec2ve func2on. However, these 
guidelines are far from being regularly adopted, also because of the 2me needed to collect measurements, and of cost 
and usability of available instruments. 

This study aims at presen2ng a mobile applica2on designed to enable an efficient and rapid collec2on of quan2ta2ve 
data on both parameters and rate/state variables relevant for crop model parameteriza2on. In the current version, the 
app es2mates leaf area index (LAI), ex2nc2on coefficient for solar radia2on (k), plant nitrogen content (PNC), nitrogen 
nutri2on index (NNI), and stomatal conductance (gs). 

Scien8fic background 

The method for LAI makes use of the device accelerometer to capture live-preview camera frames at 57.5° zenith angle 
while the user is rota2ng the device along its main axis. Frames are then automa2cally segmented to iden2fy the 
percentage of “sky pixels”, i.e., the gap frac2on, which is converted into LAI values using the light transmi9ance model 
described by Baret et al. (2010). PNC is es2mated from leaf greenness, in turn quan2fied according to Karcher and 
Richardson (2003). A dedicated reference panel is used during image acquisi2on to fla9en spectral reflectance, thus 
normalizing the se{ngs of the device exposure meter. PNC is used – together with cri2cal N concentra2on (Ncrit) 
(derived from LAI according to Confalonieri et al. (2011)) – to es2mate NNI, as the PNC to Ncrit ra2o. The applica2on 
enables 3D scanning of leaf surfaces using the device accelerometer and magnetometer. The resul2ng leaf angle 
distribu2on is used (i) to derive k as a func2on of the parameter χ of the Campbell’s ellipsoidal distribu2on, and (ii) to 
es2mate gs from changes in leaf architecture (Paleari et al., 2024; Rusconi et al., 2025). 

 

 



 
 

 

The mobile app 

The mobile app (Fig. 1), currently available for Android devices, is designed for data collec2on in field experiments, with 
a user-friendly interface, an integrated user guide and the possibility to tag and store data. Measurements referring to 
the different quan22es are georeferenced using the device GPS, and data can be exported in both text and shapefile 
formats for further analysis and processing. 

 

 

Figure 1. The mobile application scheme illustrating parameters (blue), rate (purple) and state (orange) variables of interest for model 
parameterization. 

Conclusions 

The proposed mobile applica2on provides an innova2ve, low-cost, and portable solu2on for in-field data collec2on of 
key crop parameters and rate/state variables, thus enhancing the robustness of model parameteriza2ons and suppor2ng 
more reliable applica2ons of crop models across different contexts. 
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Introduc8on  

The Farquhar–von Caemmerer–Berry (FvCB) model describes leaf photosynthesis by defining key biochemical 
parameters that determine carbon assimila2on limited by Rubisco ac2vity, electron transport, or triose phosphate 
u2liza2on. Cropbox is a Julia-based declara2ve framework for developing process-based crop models (Yun & Kim, 2023). 
Using this framework, we implemented a coupled leaf gas-exchange model commonly used in crop models (Yun et al., 
2020). While the framework facilitates op2miza2on and integra2on of physiological sub-models, strong feedback among 
coupled components s2ll leads to high computa2onal costs under high-resolu2on input features. 

To address this, we developed a machine learning (ML) surrogate trained on Cropbox outputs to reproduce the coupled 
model’s accuracy with greatly improved efficiency. Previous canopy-scale studies have used hybrid models combining 
FvCB parameters with ar2ficial neural networks (ANNs) for generaliza2on (Kaneko et al., 2022). Other recent studies 
have applied ML approaches such as Random Forest, XGBoost, and ANNs to address re-parameteriza2on challenges of 
semi-empirical stomatal conductance models (Gaur & Drewry, 2024). In contrast, our study emulates the complex leaf 
gas-exchange system implemented in Cropbox. As illustrated in Figure 1, our ML surrogate reproduces its outputs by 
incorpora2ng both environmental variables and model parameters that can be freely adjusted. 

Materials and Methods  

Environmental variables and FvCB parameters (Vcmax, Jmax, Rd) were uniformly sampled via La2n Hypercube Sampling 
(LHS) and used as inputs to generate reference data. The environmental range was constructed to encompass extreme 
climate condi2ons derived from mul2-decadal meteorological records across various regions of Korea.  

Simulated assimila2on components (Ac, Aj, Ap, Agross, Rd) from the leaf gas-exchange model were used as targets to train 
mul2ple machine learning regressors, including Random Forest, Extra Trees, HistGradientBoos2ng, Gradient Boos2ng, 
and XGBoost. Compara2ve analysis was conducted to assess the accuracy and computa2onal efficiency of the ML 
surrogate rela2ve to the original Cropbox simula2on. 

Results and Discussion  

Among tested algorithms, XGBoost yielded the best agreement with the original model for Agross (RMSE = 0.34, MAE = 
0.21, R² = 0.996). Processing 20,000 samples with the trained surrogate was over 50 2mes faster than the original 
Cropbox simula2on while maintaining comparable accuracy. Direct predic2on of gross assimila2on (Agross) by ML also 
surpassed the indirect minimum (Ac, Aj, Ap) method, confirming that the surrogate captured integrated physiological 
constraints within the coupled gas-exchange system. 

 

 



 
 

 

Conclusions 

The proposed XGBoost surrogate model accurately emulates the coupled FvCB–stomatal conductance system 
implemented in Cropbox while reducing computa2on 2me by more than 98%. Exis2ng process-based crop models suffer 
from computa2onal inefficiency because the strong feedback among coupled components requires itera2ve numerical 
op2miza2on during the coupling process. By contrast, our surrogate model based on machine learning effec2vely 
alleviated these computa2onal limita2ons. Future work will focus on extending Cropbox with a func2onality that can 
automa2cally generate and subs2tute surrogates for computa2onally intensive modules during run2me.  

 

 
Figure 1. Schematic Diagram of the Proposed Hybrid Modeling Approach 
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Introduc8on 

Extreme weather events such as drought and flooding are becoming more frequent and intense, causing devasta2ng 
impacts on agricultural produc2vity, farmer livelihoods, and food security. Recent studies suggest that shallow 
groundwater influences the severity of drought and waterlogging stresses on crop yields (Deines et al., 2024). Capillary 
rise from shallow groundwater provides addi2onal water for root uptake, plant transpira2on, and soil evapora2on, 
thereby mi2ga2ng drought stress. On the other hand, very shallow water tables can lead to excess soil water around 
root zone, intensifying waterlogging stress. A global analysis es2mates that water table depth lies within or near the root 
zone in 22–32% of terrestrial land area, highligh2ng the need to improve our understanding and modelling of the shallow 
groundwater impacts on aboveground produc2vity (Fan et al., 2013). However, groundwater impacts on vegeta2on are 
ouen neglected in risk assessment studies using process-based models, which may result in systema2c biases in 
simulated drought and waterlogging stresses (Ukkola et al., 2016). Here, we present field- and na2on-scale evidence 
demonstra2ng that incorpora2ng groundwater effects enhances the skill of a process-based crop model to simulate 
water balance and crop growth. 

Materials and Methods 

We first improved the default SIMPLACE <LINTUL5, SLIM> process-based crop model by integra2ng new modules that 
simulate the influences of groundwater on root-zone water balance. Second, we used lysimeter data to evaluate the 
performance of both the default and improved models in simula2ng net water flux at the bo9om of the lysimeter (i.e., 
1.5m below soil surface), actual evapotranspira2on, aboveground biomass, and grain yield. Auerwards, we conducted 
na2onwide simula2ons across Germany with both models and compared the results to winter wheat yield sta2s2cs to 
assess whether incorpora2ng groundwater improves the model's explanatory power for spa2otemporal yield variability. 

Results and Discussion 

Model evalua2on with the lysimeter data showed that incorpora2ng groundwater effects significantly improved the 
model's skill in simula2ng water balance and crop growth (Figure 1a-c). Before the improvement, the simulated net 
bo9om water flux was always nega2ve (i.e., loss to deeper layers), whereas the observed net bo9om water flux ranged 
from -101 mm per season to +52 mm per season. Auer the improvement, the simulated net bo9om water flux aligned 
more closely with the observa2ons, with a maximum simulated value of +36 mm per season. This more accurate 
representa2on of water balance at the bo9om boundary, improved the simula2on of actual evapotranspira2on. The 
improved simula2on of actual evapotranspira2on led to a more realis2c representa2on of drought stress, which is 
calculated as actual evapotranspira2on divided by poten2al evapotranspira2on, ul2mately resul2ng in be9er 
simula2ons of aboveground biomass and yield. 

Na2onwide simula2ons indicated that incorpora2ng groundwater effects improved the simula2ons of spa2otemporal 
variability in winter wheat yield across Germany (Figure 1d-e). The default model underes2mated yields during the hot 
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and dry year of 2018, while the improved model reduced this bias by capturing the buffering effect of shallow 
groundwater against drought. Conversely, the default model significantly overes2mated yields in the wet years of 2013 
and 2016. Although the improved model slightly reduced this error, the simulated yields remained much higher than the 
observa2ons. These results highlight the need to improve crop models to capture various stresses due to excess rain, 
including not only waterlogging, which is par2ally represented in the improved model, but also submergence, lodging, 
pests, and diseases, which are not yet considered. Although the improved model performed slightly be9er in simula2ng 
spa2al yield variability, both models s2ll failed to adequately capture it. This outcome is expected, as the simula2ons do 
not account for local prac2ces such as the use of cul2vars with varying drought and waterlogging tolerances, irriga2on 
strategies, and drainage systems, primarily due to a lack of high-quality and fine-resolu2on spa2al data. 

 

 
Figure 1. Evaluation of the default and improved crop models. Field-scale evaluation with lysimeter data (a–c) including cumulative net water flux at 
the bottom of lysimeter (cumWFb), cumulative actual evapotranspiration (cumETa), aboveground biomass (AGB), and grain yield (GY). National-scale 
evaluation of temporal (d) and spatial (e) variability in German winter wheat yield. NRMSE denotes normalized root mean square error. The absolute 
error change is calculated as the absolute error of the improved model minus that of the default model. The temporal statistics are calculated across 
the years 2011–2020, while the spatial statistics are calculated across NUTS3 districts. 

Conclusions 

Here, we provide evidence highligh2ng the importance of incorpora2ng groundwater impacts on crop growth to be9er 
capture spa2otemporal variability in crop yields. However, several limita2ons remain that should be addressed in future 
research. First, since shallow water tables play a more significant role during extreme dry and wet years compared to 
normal years, it may be necessary to conduct further analysis using large ensembles of climate model outputs, which 
be9er capture interannual variability, rather than relying solely on historical records. Second, we did not consider the 
effects of crop management on water table depth, as we relied on sta2c monthly data from groundwater modeling. To 
simulate the feedback loop between crops and groundwater, it would be necessary to dynamically integrate a process-
based crop model with a hydrological model that includes both surface water and groundwater processes. 
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Introduc8on 

We present a novel modular crop growth simula2on model ‘Swap-Snomin-Lingra’ composed of the water balance 
module of the SWAP model (Heinen, 2024), the soil organic ma9er module SNOMIN (Berghuijs 2024) and the LINGRA 
grass model (Schapendonk, 1998). The new model was especially designed for simula2ng specific condi2ons in Dutch 
grassland management. Grass in the Netherlands is produced mostly in the we9er soils, ouen below sea level, with high 
groundwater levels and with drainage canal systems ensuring the top soil layer is not completely saturated throughout 
the year. The SWAP model component with associated data sources is par2cularly suited for simula2ng these condi2ons. 
The Netherlands has a large animal sector and animal manure is an important input for intensively managed grassland. 
The SNOMIN model component can simulate mineral and organic nitrogen (N) dynamics in the soil and simulate N 
release from organic manures. The LINGRA crop component can simulate grass growth in response to weather, water 
availability and nitrogen. The Digital Future Farm (DFF) (van Evert, 2021) presents a modelling framework for coupling 
the components, allowing them to automa2cally exchange simulated variables between the components. Crop modeling 
can give insight in current status of crop and es2mate the effect of different management (fer2lizer applica2on, mowing 
2ming) choices. Swap-Snomin-Lingra gives insight in the interac2on between soil water dynamics, organic fer2lizer and 
SOM mineraliza2on, grass N uptake and grass growth and environmental impact (N leaching). The new model was 
validated with two experimental datasets.  

Materials and Methods 

The ‘Zode bemes2ng’ experiment was with 3 ca9le manure levels. The ‘Amazing Grazing’ experiment included 
destruc2ve measurements at 4 2mepoints each cut. In both experiments there were 3 loca2ons, 3 years, 4-6 grass 
growing cycles per year (each ending with mowing) and 3 mineral fer2lizer levels. The two experimental datasets contain 
measurements on biomass (kg dry ma9er ha-1), N content of the biomass (%) and total N in biomass (kg N ha-1). The 
Amazing Grazing dataset also contains measurements on groundwater level (cm below ground level).  

In the DFF framework, modular soil-plant component models are set up as a standardized interac2on between 5 
components: a soil water component (in this applica2on: SWAP), a soil nitrogen component (SNOMIN), a crop growth 
component (LINGRA), a meteo component (TipstarMTC) and a soil temperature component (TipstarSTC). The exchange 
between these components is limited to a couple of variables, including poten2al and actual (evapo)transpira2on rates, 
nitrogen uptake rate, water fluxes between soil layers, LAI and root depth.  

Results and Discussion 

Included is the comparison between experimental observa2ons and simula2on output for N content of the biomass. 
Similar plots were made for biomass, total N in the biomass and groundwater level. As expected, the Swap-Snomin-
Lingra model shows increasing N uptake with higher N applica2on, roughly in accordance with measured levels. The 



 
 

 

simulated produced biomass has more deviance compared to the experiment observa2ons. This might be due to the 
dis2nc2on between live and dead biomass, where the experimental data combine both but the simula2on output  

 Table 1. RMSE of compared variables in both datasets 

 AmazingGrazing ZodeBemes%ng 

Biomass (kg dm ha-1) 967 657 

N in biomass (kg N ha-1) 29.26 31.08 

N content (%) 0.75 0.76 

Ground water level (cm below surface) 42.45  

gives only live biomass. Simulated groundwater level roughly follows observed trends, but it shows larger deviation 
from the observed groundwater level at lower levels than when groundwater depth is shallow. 

 
Figure 1. Simulated vs observed nitrogen content of the live biomass (kg N kg dm-1) per location and year in the zodebemesting experiment. 

Conclusions 

The concept of a modularly designed crop growth simula2on model with exchangeable components presents a powerful 
concept of model design tailored for specific condi2ons and building of a large knowledge base embedded in exis2ng 
modules. Valida2on of Swap-Snomin-Lingra model simula2ons with observed biomass and observed nitrogen showed 
first promising results. 
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Silvoarable agroforestry, the integra2on of trees or shrubs into cropland, is increasingly promoted also in temperate 
regions to enhance biodiversity, carbon sequestra2on and reduce soil erosion (Veldkamp et al., 2023). Furthermore, it 
can have several benefits for crop produc2on, poten2ally improving resilience in the face of extreme weather events 
(Dobhal et al., 2024). However, it is challenging to predict the influence of trees on crops growing nearby. Trees influence 

different bio2c and abio2c crop stressors, and this influence varies with increasing distance from the trees (Jacobs et al., 
2022) and throughout the growing season. The intensi2es of stressor exposure are expected to display gradients 
perpendicular to the tree rows (Figure 1), resul2ng in different rela2ve stressor intensi2es at each distance from the tree 
row. Here, we explore methods to inves2gate how crop responses to irradia2on, temperature, as well as water 
availability change with the distance from trees using sta2s2cal and process-based crop models. 

First, sta2s2cal models that can consider temporal and, where needed, spa2al autocorrela2on are used to inves2gate to 
which degree the irradia2on gradient (i.e. tree shade) is a predictor for the gradient in soil water availability and 
temperature. Second, a process-based crop model within SIMPLACE (Enders et al., 2023) based on Lintul 5 is calibrated 
using crop development and growth data as well as abio2c stressors measured at a large distance from the tree row or 
at a reference field without trees. A standardized calibra2on protocol is developed to make the method reproducible for 
different sites. Using this model, its performance in simula2ng crop growth closer to the tree when only the irradia2on 
hi{ng the canopy, or only the soil water availability, or both are adapted to measured values close to the tree row are 
assessed. The model output can be compared to the observed crop growth using regression models like the ones 
described from the first methodological step. These methods can help to understand which (combina2on) of 
environmental gradients is most decisive for crop growth close to trees.  

To avoid the need to model the water uptake by the tree roots explicitly, measured soil moisture data is assimilated into 
the process-based model. Furthermore, a model for the crop canopy temperature is included as crop canopy 
temperature results from a non-linear interac2on of air temperature, irradia2on, the plant water status, wind speed and 
atmospheric stability condi2ons. This allows assessing possible improvements in model predic2ve skill when this 
interac2ve effect is accounted for. 

Later, the methods will be tested by using data from wheat and maize at two agroforestry sites in Germany where 
stressor exposure is monitored over 2me by measuring irradia2on, soil moisture, wind speed, and crop canopy 
temperature. Crop responses are monitored by measuring phenological development and leaf area index over 2me as 
well as final biomass and grain yield. The results will support understanding whether crops close to trees respond to 
abio2c stressors in the same way as expected in sole cropping, i.e. trees mainly change the stressor exposure, or whether 
unique stressor responses resul2ng from the presence of the trees should be considered in agroforestry models. 

 



 
 

 

 
Figure 1. Hypothetical example of gradients of microclimatic variables, i.e. abiotic crop stressors perpendicular to tree rows. The shape of the 
gradients is based on available evidence and/or personal expectations. The gradients have no scale and no common zero point. Adapted from 

Jacobs et al., 2022. 
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Introduc8on  

Accurate simula2on of daily evapotranspira2on (ET) is essen2al for assessing water stress and irriga2on management in 
wheat. Previous mul2-model ensemble studies have revealed a systema2c underes2ma2on of winter wheat ET and 
proposed preliminary explana2ons(Webber et al., 2025), but the environmental drivers of simula2on errors remain 
unclear. This study inves2gates which factors shape ET simula2on accuracy in semi-arid and Mediterranean wheat 
systems. 

 

Materials and Methods 

We analyzed daily ET from mul2-model ensembles benchmarked against ET observa2on records in Bushland (Texas, USA) 
and Avignon (France). Simula2on error was quan2fied as the difference between modeled and observed ET. Beyond 
error decomposi2on, we applied linear mixed-effects models to examine how environmental factors influence ET error 
across crop development stages and ET es2ma2on methods. 

 

Results and Discussion  

Error decomposi2on revealed clear structural differences between rainfed and irrigated condi2ons: higher mean 
squared error (MSE) under irriga2on was primarily driven by variance rather than systema2c bias(Hodson et al., 2021). 
Mixed-effects modeling further showed that vapor pressure deficit (VPD) and wind speed are the dominant 
environmental drivers of ET error. We also labeled the simula2on results based on the ET simula2on method into three 
groups: results simulated using the ET0 method (ET0), results simulated using the Priestley-Taylor method for PET 
(PET_PT), and results simulated using other methods for PET (PET_other).Under rainfed condi2ons, ET errors were most 
sensi2ve to VPD during full canopy cover (ET0 and PET_Other slopes ≈ –0.87), weaker during senescence, and negligible 
at early vegeta2ve stages. Wind speed effects peaked at early vegeta2ve stages (e.g., PET_PT slope ≈ –0.43) but declined 
towards senescence. Under irriga2on, both VPD and wind speed exerted stronger and more consistent nega2ve 
influences. VPD sensi2vity peaked at senescence (slopes < –1.2), while wind speed significantly reduced errors across all 
methods, par2cularly for PET_PT (–0.55 to –0.94). PET_PT-based simula2ons were least sensi2ve to VPD but most 
sensi2ve to wind speed, whereas ET0 and PET_Other were more strongly driven by VPD. 



 
 

 

 

Figure 1. Marginal effects of vapor pressure deficit (VPD, top) and wind speed (bottom) on daily evapotranspiration (ET) simulation errors under 
a.rainfed (water-limited) conditions and b. irrigated conditions, estimated from linear mixed-effects models. Points represent slopes of ET error with 
respect to standardized VPD or wind speed (±95% CI), stratified by crop development stage 

These findings indicate that the dominant error drivers shiu from stomatal/soil-limited control under rainfed condi2ons 
to aerodynamic/atmospheric control under irriga2on. The significant DS × Method × Environment interac2ons explain 
why model performance diverges under contras2ng water regimes and emphasize the need to refine aerodynamic and 
stomatal regula2on processes in crop models. 

Conclusions  

The magnitude and direc2on of wheat ET simula2on errors are jointly shaped by crop development stage, ET es2ma2on 
method, and atmospheric drivers, with dis2nct pa9erns under rainfed and irrigated management. Incorpora2ng stage-
specific aerodynamic and stomatal controls could improve model realism and reduce systema2c ET underes2ma2on. 
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Introduc8on  

Plant species adopt contras2ng ecological strategies ranging from fast-growing annual herbs to long-lived evergreen 
trees, reflected in traits such as leaf mass per area (LMA), carbohydrate storage, and stomatal conductance (gmin). The 
la9er is a par2cularly cri2cal trait under climate change, as it controls residual water loss when stomata are closed and 
thus strongly influences drought survival (Burle9 et al., 2025). Since metabolites are the biochemical building blocks of 
plant traits, metabolomics provides a promising entry point for linking molecular processes with func2onal ecology 
(Dussarrat et al., 2022). However, the integra2on of metabolomic data into trait-based and modelling frameworks 
remains limited. Here, we combined non-targeted metabolomics, func2onal trait measurements, and machine-learning 
approaches to assess whether metabolic profiles can predict plant func2onal traits, including complex physiological traits 
such as gmin, and how these rela2onships may support modelling of plant strategies under climate stress. 

Materials and Methods 

A wide range of plant species was sampled in the Bordeaux area including trees, shrubs, and herbs (annuals and 
perennials) across angiosperms and gymnosperms. Fully developed leaves were collected at comparable phenological 
stages. Metabolites were extracted from 10 mg of lyophilized plant material using an ethanol frac2ona2on protocol and 
profiled by UHPLC–LTQ-Orbitrap MS in nega2ve ion mode. Raw data were processed in MS-DIAL v4.9, yielding 4725 
curated features auer QC correc2on. Annota2on relied on in-house metabolite libraries and ClassyFire ontology. Leaf 
func2onal traits (LMA, leaf area, water content, stomatal area and density, gmax, gmin) were measured and used as 
predic2on targets. Machine-learning models, consis2ng of Elas2c-Net and LASSO Regression or classifica2on, were 
trained to predict traits from metabolite profiles. Feature selec2on methods were used to iden2fy key metabolic 
variables associated with each phenotype while adequate cross-valida2on and data spli{ng was used to reduce the risk 
of overfi{ng. 

Results and Discussion 

Trees displayed conserva2ve metabolic strategies, with high investment in lignans, carbohydrates, and storage amino 
acids, while herbaceous plants, par2cularly annuals, exhibited metabolic profiles rich in TCA intermediates and nitrogen-
rich amino acids, suppor2ng rapid growth. Evergreen trees showed enrichment in glycosyl conjugates and prenol lipids, 
whereas deciduous species accumulated flavonoids and coumarins, reflec2ng possible seasonal shius in defence 
alloca2on.  

Machine-learning models successfully predicted mul2ple func2onal traits from the metabolomic data. They showed for 
example that species with low LMA accumulate primary metabolites that sustain rapid growth and metabolic ac2vity, 



 
 

 

whereas high-LMA species are enriched in structural and defence-related compounds that enhance 2ssue density, 
protec2on, and resilience. Importantly even gmin, a complex physiological trait linked to leaf structure and cu2cle 
composi2on, was predicted with good accuracy. This demonstrates that metabolome embed informa2on linked to 
water-use strategies, offering a novel tool for modelling drought responses. 

By linking metabolite fingerprints to traits underpinning resource use and climate resilience, our study highlights 
metabolomics as a bridge between omics-scale data and crop models. Predic2ng traits like gminfrom metabolomic data 
can reduce reliance on labour-intensive physiological assays, could improve parametriza2on of ecophysiological models 
and could help iden2fy resilient genotypes for breeding under climate change. 

Conclusions 

Our findings demonstrate that the building blocks of func2onal traits are encoded in metabolism and that metabolomic 
data, combined with machine learning, can robustly predict both simple and complex traits such as gmin. This approach 
offers a powerful addi2on to trait-based ecology and crop modelling, enabling more accurate integra2on of molecular 
level informa2on into simula2ons of plant adapta2on and resilience under global change. 
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Introduc8on 

Climate change is adversely impac2ng the produc2on of food and oilseed crops (AAFC, 2025). An accurate predic2on of 
plant development can help agronomists to evaluate the impact of different crop management prac2ces and help plant 
breeders to predict cul2var performance in the target popula2on of environments or help select robust cul2vars for 
future target environments impacted by climate change.  

The aim is to evaluate the WOFOST model predic2on accuracy for three predic2on problems faced by most breeding 
programs and defined in the following scenarios: the first scenario is a hold-out loca2on scenario to simulate a known 
cul2var in an untested novel loca2on, the second hold-out cul2var scenario simulates a new cul2var in a known test 
loca2on using crop parameters calibrated with observa2ons from cul2vars belonging to a similar maturity group, and 
the third hold-out combined cul2var & loca2on scenario simulates a new cul2var in an untested novel loca2on. The 
obtained results will help to understand the possibility to simulate the two key plant developmental stages, flowering 
and maturity, for each of the defined scenarios. 

Materials and Methods 

In this spring oilseed rape (Brassica napus, canola) case-study, ten spring oilseed rape cul2vars have been evaluated in 
ten different field trials. The ten cul2vars have been selected carefully for their differences in phenology or more 
specifically 2me to flowering and 2me to maturity.  

 

The WOFOST (WOrld FOod STudies, de Wit A. et al., 2019) simula2on model is used to simulate the impact of different 
environments, exposed to different abio2c stresses, on the spring oilseed rape phenology. For the calibra2on of the crop 
phenological development model, we followed the 6-step protocol defined by Wallach et al. 2023. To determine the key 
input parameters involved in the simula2on of crop development we are using a systema2c approach for the study of 
the combined effect of all inputs on the output called uncertainty analysis and the study of the contribu2ons of 
components to the uncertainty of the model called sensi2vity analysis (Saltelli A. et al., 2010). The key crop parameters 
iden2fied in the sensi2vity analysis are then used for calibra2on of the WOFOST and Beta-Distribu2on Method (BDM, 
Zhou & Wang, 2018) adapted WOFOST models. To find the op2mized parameter values for the iden2fied key crop 
parameters, we performed a two-step approach. In the first step, a global op2miza2on algorithm is used for finding the 
feasible value that minimizes the objec2ve func2on over the en2re feasible region. And in a second step the op2mized 
parameters from the global op2miza2on algorithm are used as the star2ng point for a local deriva2ve-free op2miza2on 
subplex algorithm. 
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For the evalua2on of the model performance, all available observa2ons for the same cul2var or for the same maturity 
group are used for the calibra2on of the iden2fied key crop parameters. And ul2mately, the model predic2on accuracy 
is evaluated for the three most relevant predic2on problems in plant breeding as defined in the introduc2on. 

Results and Discussion 

The performed sensi2vity and uncertainty analysis is indica2ng that the oilseed rape phenology is mainly temperature 
driven, and two crop parameters (TSUM1 & TSUM2) have been iden2fied explaining most of the variability in the crop 
model output. As illustrated in the Top Marginal Variance (TMV) composi2on plot for the evalua2on of the parameter 
sensi2vity changes over 2me during the crop growing period (Figure 1). 

 

 
Figure 1. Plot daily TMV composition for evaluation of parameter sensitivity changes over time during the crop growing period using SAS23b 
weather data. For WOFOST model (IDSL = 0) only parameters TSUM1 & TSUM2 are sensitive, all other non-sensitive parameters stay close to zero. 

The WOFOST model performance evalua2on results confirm a good performance for the DOA simula2on with a RMSE 
value of 4 days. However, a moderate es2mate was obtained for DOM with a minimum RMSE of 12 days. Improved 
predic2on accuracy for the predicted DOA and DOM dates can be obtained when a well-represented selec2on of 
loca2ons is included in the training set for calibra2on (HO_2024, Table 1). 

 

Table 1. Overview of RMSE and Willmott refined index of agreement calculations obtained per scenario for the best and the worst DOA simulations. 

Scenario Training set 
Average 

data points 
Min 

RMSE 
Max 

RMSE 
Max 

WillmoK ref. 
Min 

WillmoK ref. 

performance all observa_ons 41 2.57 8.15 0.89 0.56 

hold-out cul_var cul_var hold-out (HO_entry) 57 9.12 18.32 0.48 -0.26 

hold-out cul_var cul_var hold-out Canada only (HO_entry_CAN) 48 9.38 18.18 0.26 -0.30 

hold-out loca_on year 2024 hold-out (HO_2024) 18 7.26 12.50 0.50 -0.33 

hold-out loca_on 20% loca_ons hold-out (HO_20%) 22 9.12 18.43 0.48 -0.27 

hold-out loca_on loca_on hold-out Canada only (HO_loca_on_CAN) 14 10.38 14.27 -0.17 -0.76 

hold-out cult. & loc. combina_on cul_var loca_on hold-out Canada only 42 9.00 18.75 -0.89 -1.00 

 



 
 

 

Conclusions  

The proposed systema2c approach for uncertainty and sensi2vity analysis highlighted the cri2cal role of temperature 
in driving the phenological development of spring oilseed rape, as modeled by WOFOST. Cul2var- and maturity group-
specific calibra2ons showed promise, especially when the training dataset used for calibra2on is aligned with 
environmental variability of the target environments. DOM predic2ons are expected to be more challenging due to the 
complexity of genotype × environment interac2ons. The poten2al benefits from crop developmental stage-specific 
temperature func2ons and possible influence of addi2onal variables warrant further valida2on and may offer 
opportuni2es to improve the DOM simula2ons. Future research should explore advanced calibra2on techniques, 
including Bayesian and machine learning approaches, to enhance model reliability and scalability. 
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Introduc8on  

Wheat is one of the world’s major staple crops, providing much of the global calorie intake. However, it is highly sensi2ve 
to tropospheric ozone (O₃), a secondary pollutant formed from nitrogen oxides, vola2le organic compounds, and other 
precursors. O₃ exposure reduces primary produc2on and crop yields, yet its impacts on soil organic carbon stocks remain 
poorly studied, and most climate models omit O₃ effects, introducing biases in future projec2ons. 

Materials and Methods  

The CERES-O3 cropping system model (Lebard, 2005), an extension of CERES-EGC (Gabrielle et al., 2006), simulates crop 
development and associated fluxes of carbon, water, and energy using meteorological forcing data and informa2on on 
agricultural management prac2ces (e.g., crop rota2ons, residue management, organic inputs). It integrates Farquhar’s 
photosynthesis equa2ons (Farquhar et al., 1980) as well as equa2ons accoun2ng for ozone impacts on photosynthe2c 
assimila2on, and hence on yields and biomass produc2on. O₃ impacts are represented through a flux-based Phytotoxic 
Ozone Dose with an 8 nmol m⁻² s⁻¹ threshold (POD8), computed from hourly modeled stomatal O₃ flux and accumulated 
over the growing season (mmol m⁻² leaf). POD8 then drives reduc2ons in photosynthe2c capacity (e.g., Vcmax/Jmax) 
and earlier senescence. Unlike most exis2ng studies using crop models to assess O3 impacts on yields only, our flux-
coupled framework extends the impact assessment of soil carbon dynamics, a link rarely quan2fied in crop–climate 
assessments. 

Model calibra2on relied on a 2009 field experiment conducted in Grignon, France, where two wheat varie2es were 
exposed to different O₃ concentra2ons generated at varying distances from a fumiga2on ramp. Observed O₃ levels 
served as treatments to assess physiological responses, which were then extrapolated to yields, biomass, and soil carbon 
pools. Model valida2on was extended to several years by using wheat yield and biomass data from the same site, with 
ambient O₃ concentra2ons and management prac2ces retrieved from the ICOS carbon portal. 

Results and Discussion  

Simula2ons suggest that O₃ reduces carboxyla2on, electron transport, and stomatal conductance, while increasing dark 
respira2on and accelera2ng senescence. These processes decrease assimila2on, biomass accumula2on (≈ 20%), and 
yield (≈ 11%). In addi2on, long-term simula2ons (10 years) indicate a decline in soil organic carbon stocks under elevated 
O₃. 

 



 
 

 

 
Figure 1. Impacts of ozone on plant production and soil organic carbon stocks 

 

Conclusions  

Overall, tropospheric ozone (O₃) poses a dual threat — not only by reducing wheat yields, thereby compromising food 
security, but also by weakening the capacity of agroecosystems to store carbon, and thus our ability to mi2gate climate 
change. Our findings underscore the need to integrate O₃ effects into cropping system models at larger scales to be9er 
assess yield losses and soil carbon decline in European wheat systems, both under current condi2ons and across future 
scenarios of climate change and air pollu2on. 
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Introduc8on  

Crop simula2on models are widely used to predict crop growth and yield under varying environmental condi2ons. 
However, most studies have relied on fixed temporal resolu2ons, ouen at daily or sub-daily scales, but rarely with 
systema2c evalua2on of how alterna2ve temporal scales affect predic2on accuracy and computa2onal demand. Since 
physiological processes such as photosynthesis and carbon assimila2on are nonlinear, coarse temporal resolu2on may 
lead to biased es2mates. Despite recogni2on of these issues, few studies have quan2fied the biases arising from 
different temporal resolu2ons and their implica2ons for model performance. This study addresses this gap by tes2ng 
mul2ple temporal resolu2ons in a garlic model implemented within the Cropbox framework.  

Materials and Methods  

Hourly weather data were obtained for the study site and period. These data were resampled into mul2ple temporal 
resolu2ons ranging from 1 hour to 168 hours using Julia (TimeSeries.jl). Meteorological variables were aggregated by 
mean or by sum. Missing values, if present, were interpolated from daily means to preserve con2nuity. 
Simula2ons were conducted using the garlic crop model implemented in the Cropbox framework (Hsiao et al., 2019, 
Yun et al., 2022). Cropbox provides explicit specifica2on of physical units for all variables, allowing flexible adjustment 
of simula2on 2me steps via configura2on (Yun & Kim, 2023). For each resampled weather dataset, the model was 
ini2alized at the first 2mestamp of the series, and the simula2on 2me step was set to match the aggrega2on interval. 

Model outputs included dry yield, carbon assimila2on, leaf appearance, leaf area, and bulb mass. Simula2on results 
from each temporal resolu2on were compared against the baseline 1-hour simula2on using RMSE and MAE. 
Computa2onal cost was quan2fied by measuring model run2me from ini2aliza2on to comple2on in a specified 
compu2ng environment (Mac mini, 2023; Apple M2 chip; 16 GB RAM; macOS 14). 

The overall workflow of the experiment, from input data to trade-off evalua2on between accuracy and computa2onal 
cost, is illustrated in Figure 1. 

Results and Discussion  

Coarser temporal resolu2ons tended to overes2mate carbon assimila2on due to the nonlinear light-response of 
photosynthesis and accumulated numerical integra2on errors, especially when diurnal varia2on was smoothed. 

In contrast, morphological traits such as leaf area and leaf appearance were rela2vely insensi2ve to resolu2on, as they 
are governed by thermal 2me func2ons, namely growing degree days (GDD) and the Beta func2on, which robustly 
captured temperature varia2on regardless of step size. This underscores the differing sensi2vity of radia2on-driven 
growth processes vs. temperature-driven morphological processes. 



 
 

 

Thus, while radia2on processes were more sensi2ve to changes in temporal resolu2on and temperature processes 
remained rela2vely stable, larger 2me steps substan2ally reduced computa2onal cost, ul2mately confirming the 
inevitable trade-off between accuracy and efficiency. 

Conclusions 

This study highlights the crucial role of temporal resolu2on in crop modeling. While hourly data ensure higher 
accuracy, they demand greater computa2onal resources. Coarser resolu2ons reduce cost but can introduce significant 
biases in carbon dynamics and stress responses. By quan2fying both predic2on accuracy and computa2onal demand, 
this research can provide prac2cal guidelines for selec2ng appropriate temporal resolu2ons in crop modeling 

applica2ons.  
Figure 1. Workflow for evalua_ng temporal resolu_on in the garlic model 
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Introduc8on  

Global land surface models (LSMs) describe vegeta2on growth in detail, with a photosynthesis module alloca2ng the 
carbon and nitrogen concentra2ons to each part of the plant (leaves, stem, roots), while simula2ng the energy use and 
plant hydraulics and connec2ng fluxes to the environment (soil, atmosphere) of the plants. Crop modules to simulate 
global yield for different crops are one of the most recently added components to LSMs (Fisher and Koven, 2020). LSMs 
usually take more a generic approach compared to process-based agronomy models, which were mainly developed for 
field-scale applica2ons and model detailed growth stages, different stresses and various management prac2ces. The 
coarse spa2al resolu2ons (0.5-2.0◦ lat/lon) and lack of detailed crop informa2on at the global level, make crop 
implementa2ons in LSMs challenging, resul2ng in simplifica2ons of crop growth stages and land management prac2ces 
(Levis, 2014). However, the need for more accurate representa2on of crops on a global scale increases with increasing 
threats to global produc2on, such as climate extremes. As heatwaves are already becoming more frequent, we present 
some model implementa2ons to target heat stress effects on crop produc2on and evaluate them for the some major 
crops in the Community Land Model (CLM5).  

Materials and Methods  

A new module is introduced for this study to the CTSM5.2 code, called CropHeatStress. This module contains several 
func2ons to keep track of heat stress days during the crop growth phase. Several implementa2ons and parameteriza2ons 
are assessed to target the leaf area index (LAI) or crop grain produc2on directly. To define heat stress thresholds, the 
mean vegeta2on day2me temperature is used (Tveg,day), which is considered to be a more direct indicator of heat stress 
compared to air temperature (Siebert et al., 2014), and also includes the reduced impact for irrigated crops due to leaf 
cooling. 

The main aim of this study is to improve the crop representa2on on the global level by including yield sensi2vity to heat 
stress, hence a global analysis approach is used here. The model adapta2ons are evaluated in terms of i) model impact 
and ii) large-scale model accuracy. Model adapta2ons are based on similar approaches used in process-based agronomy 
models. The yield simula2ons are compared with gridded yield data and for the different IPCC regions during the period 
of 1980-2014.  

Results and Discussion 

Research is s2ll ongoing, but some preliminary findings can already be presented in this abstract. First of all, using 
vegeta2on temperature to define cri2cal temperature thresholds results in reduced effects of heat stress for irrigated 
crops compared to rainfed crops over the same region, as expected. This also shows the strong link between drought 
and heat stress of vegeta2on, as rainfed crops ouen do not have the capacity of self-cooling due to limited soil water 
availability during warm periods. Several test simula2ons were done to apply heat stress in different ways, either to 
accelerate leaf senescence and reduce grain produc2on, or alterna2vely, only reduce the carbon alloca2on to grains 



 
 

 

during the grain produc2on phase in CLM5. Preliminary results suggest that targe2ng the grain produc2on directly gives 
a be9er accuracy compared to the indirect measure of accelera2ng LAI senescence (figure 1), however this experiment 
shows also li9le change over most regions. The current tests only consider an absolute cri2cal temperature value, which 
results in overpredic2on of stress in mid-la2tudes and an underrepresenta2on of stress in high la2tudes. Ongoing model 
implementa2ons include tes2ng other stress func2ons and including a climatology-based cri2cal temperature threshold 
rather than absolute temperature values, with the aim of improving the temperature stress representa2on globally. 

 

 

Figure 1. Difference 
between the Root Mean Square Error (RMSE) of CLM experiment standard yield anomalies (YSA (-)) and the CLM control run, in which the RMSE for 
each experiment and control run is calculated with the Earthstat-FAO gridded annual yield dataset (also used in Lombardozzi et al., 2020). Negative 

values indicate the experiment had a lower RMSE with the reference data, and thus a higher accuracy, compared to the control run. 
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Introduc8on 
Understanding the drivers of agricultural yields is cri2cal for ensuring food security in the face of climate change, shiuing 
land-use pressures and consumer demands. The growing availability of high-resolu2on data has created new 
opportuni2es for applying machine learning (ML) to this challenge (van Klompenburg et al., 2020). Despite not modelling 
biophysical processes, ML approaches have ouen achieved higher predic2ve accuracy than process-based biophysical 
models. At the same 2me, concerns remain about the limited interpretability of many ML models. Recent advances in 
interpretable ML, including SHapley Addi2ve exPlana2ons (SHAP; Lundberg and Lee, 2017), provide ways to trace model 
predic2ons back to underlying drivers and reveal nonlinear rela2onships that are difficult to capture with tradi2onal 
methods. This “explainable ML” is gaining trac2on in agronomic research (e.g. Tamayo-Vera et al., 2025).  
Along with methodological advances, data availability also shapes how ML can be applied in studying yields. Yield 
modeling ouen relies on field trials, or  aggregated regional data (e.g. Lischeid et al., 2022). While field-trial data minimize 
measurement error, they do not capture actual farmer behavior also shaped by market condi2ons and coordina2on 
issues. In this study, we assess the poten2al of machine learning to analyze and predict yield varia2on in two major crops 
– winter wheat and maize – using observa2onal Austrian farm- and plot-level panel data covering 2015-2023. Our 
objec2ves are (1) to evaluate the out-of-group predic2ve performance of several commonly used ML algorithms, and (2) 
to iden2fy which biophysical and management features contribute most to predicted yield variability. 

Materials and Methods 
We fit four tuned ML models – two regression-based (Elas2c Net; Mul2variate Adap2ve Regression Splines, MARS)  and 
two tree-based (Random Forest (RF), Extreme Gradient Boos2ng (XGB)). Farm yields and management data 
(expenditures on pes2cides and fer2lizers, livestock density, plus binary indicators for organic farming and irriga2on) 
were obtained from the Farm Accountancy Data Network (FADN). From hourly INCA weather rasters (Haiden et al., 
2011), we extracted plot-level monthly summaries of temperature (minimum, maximum, average), precipita2on sum, 
and maximum wind speed using plot geometries from the Integrated Accoun2ng and Control System (IACS). The plot-
level soil contents of sand, silt, clay, organic ma9er, and lime, together with soil pH, were obtained from the 1x1 km grid 
“ebod2”. The analysis was conducted at three aggrega2on levels: (i) farms with only a single plot of wheat or maize 
(single plots), (ii) all plots considered individually (all plots), and (iii) farm-level area-weighted averages across mul2ple 
plots (weighted averages) to compare model performance across different spa2al scales. We tested three sets of 
explanatory features: (i) management, (ii) biophysical (weather, soil, topography), and (iii) all features combined. We 
applied SHAP to quan2fy global variable importance and explore variable-specific response pa9erns in yield predic2ons.  

Results and Discussion 
Across 72 model specifica2ons, wheat yields were predicted more accurately than maize yields, with best-performing 
models yielding R2 values of 0.57 for wheat and 0.38 for maize. Models using combined biophysical and management 
features consistently outperformed those using only management or only biophysical features. Predic2ve performance 
was best at farm-level aggrega2on for wheat, but plot-level aggrega2on for maize. Among algorithms, tree-based 
methods (XGB and RF) generally outperformed regression-based models across crops and aggrega2on levels.  
SHAP analyses highlighted clear differences in yield drivers (Figure 2). Wheat yields were strongly shaped by 
management prac2ces, with pes2cide applica2on, organic farming status, and livestock density among the top 
predictors. Maize yields, in contrast, were more sensi2ve to meteorological and soil factors, par2cularly summer rainfall, 



 
 

 

maximum temperatures, and soil texture. Eleva2on and soil texture, par2cularly silt content, were important for both 
crops, showing nonlinear yield responses — for instance, an S-shaped effect of silt, inverted U-shaped effects of pes2cide 
expenditure, and rainfall and temperature thresholds beyond which maize yields declined. Seasonality was also 
important: maize yields depended heavily on summer weather extremes, whereas wheat yields were influenced by 
winter vapor pressure, spring rainfall, and early-summer soil moisture. 
 

 
Figure 2: SHAP importance plots of the ten most important features for maize and winter wheat  

Conclusions 

Machine learning models, par2cularly tree-based methods, provided robust out-of-group predic2ve performance, with 
wheat yields generally more predictable than maize yields. Interpretable ML analyses indicated that management 
variables play a central role in explaining wheat yield varia2on, whereas maize yields are more strongly influenced by 
weather and soil. Importantly, SHAP analyses revealed nonlineari2es and threshold effects that point to yield 
responses that are not propor2onal to inputs or weather condi2ons, and thus highlight cri2cal 2pping points where 
small changes in management or weather can have large impacts. These results highlight the poten2al of ML 
approaches not only to enhance yield predic2on but also to generate insights into the rela2ve importance of different 
yield determinants across crops. 
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Introduc8on 

Accurate predic2on of grapevine phenology is cri2cal for op2mizing vineyard management, especially under changing 
clima2c condi2ons. Process-based phenology models provide a mechanis2c understanding of development stages and 
are widely used for decision support in perennial crops. This study implements two process-based models, the Chilling 
and forcing model (CF) (Cesaraccio et al., 2004) and Days Transformed to Standard temperature (DTS) (Ono & Konno, 
1999), using the Cropbox framework implemented in the Julia programming language. Cropbox offers a declara2ve 
modeling interface that simplifies the development and comparison of crop models, suppor2ng modular and 
structured specifica2on of physiological processes (Yun & Kim, 2023). 

The primary goal is to evaluate and compare the performance of the CF and DTS models for predic2ng grapevine 
flowering dates across cul2vars and regions in Korea. A simple ensemble model, combining CF and DTS predic2ons, 
was also tested as a preliminary step(Yun et al., 2017). The central focus, however, is to demonstrate how the Cropbox 
framework enables  systema2c and flexible analysis of  process-based phenology. A schema2c overview of the 
modeling workflow is presented in Figure 1. 

Materials and Methods 

The analysis was conducted for two grapevine cul2vars: Campbell Early (Vi\s labrusca × Vi\s vinifera) and Kyoho (Vi\s 
vinifera), across three major cul2va2on sites in South Korea: Naju, Okcheon, and Jinju. For each cul2var–site 
combina2on, observed flowering dates (full bloom) and daily mean temperatures were collected from 1997 to 2024, 
with the number of years varying by data availability. The CF and DTS models were implemented in Julia using the 
Cropbox framework. Predic2ve performance of CF, DTS, and their simple average ensemble was evaluated against 
observed flowering dates using root mean square error (RMSE). 

Results and Discussion 

The CF model generally outperformed the DTS model in terms of RMSE across most combinations. Ensemble predictions 
consistently fell between the CF and DTS values and never produced the worst performance. However, the ensemble 
rarely surpassed the best-performing individual model. Campbell Early showed more consistent responses to 
temperature signals than Kyoho, suggesting cultivar-specific sensitivity. Differences in model performance across 
regions suggest a potential influence of local climate variations or observation uncertainty. 

Conclusions  

This study demonstrates the effec2veness of the Cropbox framework in implemen2ng and comparing phenology 
models for grapevine flowering. While the simple ensemble of CF and DTS models showed moderate error reduc2on in 
some cases, its benefit was not consistently superior to that of the individual models. Future work will explore broader 



 
 

 

ensembles that include addi2onal phenology models, building on previous mul2-model ensemble studies. Ul2mately, 
this research aims to construct a robust plaPorm for grapevine phenology modeling capable of integra2ng diverse 
approaches and adap2ng to future climate variability. 

Figure 3. Schematic diagram of the proposed phenology modeling workflow using the Cropbox framework. 
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Introduc8on  

Among strategies to increase yield poten2al, modifying crop physiological traits to develop improved genotypes is a 
promising strategy (Asseng et al., 2019). Iden8fying traits that contribute to possible yield increases is an important 
step in breeding high-performing cul2vars. While crop simula2on models have been effec2ve in evalua2ng such traits 
under diverse environments, most applica2ons have focused on water-limited condi2ons and assumed a non-limi2ng 
nitrogen supply (e.g. Xiao et al., 2020). This leaves a cri2cal gap for irrigated systems, where trait performance interacts 
with nitrogen dynamics. To address this gap, we u2lized the SSM-iCrop model to iden2fy and priori2ze physiological 
traits that can enhance irrigated maize yields in four major maize-growing sites in Iran.  

Materials and Methods  

The SSM-iCrop model (Soltani et al., 2013) was parameterized and evaluated using mul2-environment data (2001–2022), 
showing nRMSE values of 6–23% and correla2ons of 0.80–0.98 for key traits, indica2ng sa2sfactory performance under 
diverse nitrogen scenarios. For each study site, daily weather data from 2001 to 2022, including minimum and maximum 
temperature, precipita2on, and sunshine dura2on, were obtained from the Iran meteorological organiza2on. Site-
specific soil informa2on was extracted from the HC27 soil database. Crop management prac2ces were defined according 
to regional agronomic recommenda2ons. Irriga2on was automa2cally applied when 45% of available soil water had been 
depleted to avoid water stress during the growing season. Nitrogen management was adjusted by an automated 
algorithm to define site-specific op2mal strategies, which were then fixed and applied across all years. 

To explore gene2c improvement, 53 genotype-specific parameters in SSM-iCrop were screened for sensi2vity, and traits 
with consistent posi2ve yield effects were selected for in-silico modifica2on. The modified trait values reflected the 
observed gene2c varia2on reported in previous studies. Yield responses of single-trait genotypes were assessed across 
environments (2008–2022) rela2ve to a reference cul2var, providing a basis for iden2fying traits with the most significant 
poten2al to raise irrigated grain maize yields. 

Results and Discussion  

Accelerated leaf area expansion (PLAPOW) was the most influen2al trait, resul2ng in a 20% yield improvement across 
sites (Fig. 1). Faster canopy closure enhanced radia2on intercep2on and early N uptake, confirming the central role of 
early vigor in irrigated maize (Trachsel et al., 2017).  

Extending vegeta2ve (bdEMREJU) and grain-filling dura2on (bdSILPM) ranked second, raising yields by 17% (Fig. 1).  
Longer assimilate deposi2on supported higher kernel weight, consistent with evidence that grain filling dura2on is a key 
determinant of maize yield poten2al (Li et al., 2020). However, prac2cal constraints such as fixed cropping calendars may 
limit its applicability. 

Increasing radia2on use efficiency (RUE) and the slope of the harvest index (PDHI) ranked third in importance, reflec2ng 
6 to 10% yield improvement across sites. Their effects were most pronounced in short and medium-season 



 
 

 

environments, aligning with earlier findings that improved light conversion efficiency and assimilate par22oning remain 
viable targets for yield improvement.  

Nitrogen-related traits showed minor but significant yield gains (<3%). Among the nitrogen-related traits inves2gated, 
the maximum rate of nitrogen uptake (MXNUP) made the most substan2al posi2ve contribu2on to yield, promo2ng 
greater leaf area at silking, increasing post-silking radia2on intercep2on, and enhancing grain filling capacity (Fig. 1).  

 

 
 

 

 

 

 

 

 

Figure 1. Percentage change in crop yield of the in silico genotype across study sites during 2008–2022. Lefers indicate sta_s_cal groupings; genotypes 
sharing a lefer do not differ significantly according to LSD test at P = 0.05. Model parameters modified in SSM-iCrop included PLAPOW (leaf area 
expansion exponent), bdSILPM (days silking to maturity), bdEMREJU (days emergence to juvenile), IRUE (radia_on-use efficiency), PDHI (slope of 
harvest index increase during grain filling), HeatTH (cri_cal maximum temperature for leaf destruc_on), KPAR (light ex_nc_on coefficient), TP2RUE 
(upper op_mum temperature for dry mafer produc_on), TCRUE (upper ceiling temperature for dry mafer produc_on), MXNUP (maximum N uptake 
rate), FRTRL (ini_al crop mass for seed growth), SNCS (N in senesced stems), SLNS (N in senesced leaves), SNCG (N in green stems), HtLDR (leaf death 
rate by heat shock), and WTOPL (crop mass threshold for leaf par__oning). 

Conclusions 

In conclusion, trait effec2veness varied across environments due to strong genotype-by-environment interac2ons. 
Considering the challenges of extending the growing period owing to cropping systems constraints, accelerated leaf area 
development in grain maize is the most promising trait for achieving higher yields in irrigated condi2ons. These findings 
provide novel insights into poten2al breeding targets for irrigated grain maize under the growth condi2ons of Iran and 

similar arid and semi-arid produc2on environments. 
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Introduc8on 

Waterlogging (WL) affects 10–12% of global cropland (Bailey-Serres et al., 2012). Most studies rely on field data and 
point-scale models, which don’t fully capture WL dynamics (Garcia-Vila et al., 2025; Nóia-Júnior et al., 2025). Remote 
sensing (RS), especially SAR and mul2spectral data, enables large-scale monitoring. This study validates RS methods for 
es2ma2ng WL-related yield losses in Germany and integrates them into a crop model to improve impact assessment. 

Materials and Methods 

Sen2nel-1 SAR and Sen2nel-2 MSI imagery (Copernicus program, ESA) were pre-processed using SNAP, Google Earth 
Engine, and Python. Study areas included Bremen, Brandenburg, and Bavaria. WL detec2on combined edge-based Otsu 
thresholding of SAR backsca9er (< –18 dB), Gamma distribu2on fi{ng, and Markov Random Field smoothing to ensure 
spa2al and temporal consistency. RS-derived WL masks were merged with crop maps and used as oxygen deficit (OD) 
forcing in the MONICA crop model (Nendel et al., 2011). MONICA represents WL stress through Cri2cal Oxygen Content 
(COC) and Time Under Anoxia (TUA) thresholds, enabling yield simula2ons under WL condi2ons. 

 

Results and Discussion 

RS(A-C) and MONICA(D-F) consistently iden2fied WL in low-lying areas, in line with the DEM (Figure 1). Their overlay 
showed strong spa2al agreement, with WL stress concentrated in depressions. MONICA simula2ons indicated yield 
reduc2ons of 21.9%, from 4234.6 to 3538.8 kg ha⁻¹, consistent with earlier reports (Zaidi et al., 2007; Herzog et al., 2016). 
While MONICA captures oxygen stress processes, its point-based nature restricts spa2al coverage. RS, par2cularly SAR, 
improves detec2on of WL extent and severity, making it a valuable complement to process-based models. 

 

Conclusions  

WL poses a significant risk to crop produc2vity. Integra2ng RS-based WL monitoring with MONICA simula2ons enhances 
yield impact assessments and supports adapta2on strategies under increasing extreme rainfall. 



 
 

 

 

Figure 1.Comparison of WL detec_on and MONICA yield simula_ons A: RS-derived WL distribu_on B: WL stress simulated with MONICA (TUA) C: 
RS vs MONICA overlap D: With WL (kg/ha) E: Without WL (kg/ha) F: Rela_ve yield difference (%). 
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Introduc8on  

Accurate simula2on of phenological stage is crucial in the applica2on of crop growth models to predict eco-physiological 
and yield processes. ORYZA2000 (Bouman et al., 2001) is the most widespread crop model for simula2ng rice growth in 
different rice cropping systems where the phenological output is driven mainly by temperature and by eight crop 
parameters. However, significant spa2al variability in clima2c condi2ons, along with the cul2va2on of diverse rice 
varie2es, introduce substan2al uncertainty in model applica2ons. Determina2on of crop phenological parameters are 
important for the simula2on of other crop growth processes and for modeling upscale.  

Materials and Methods  

We integrated the ORYZA2000v2v13 model to the SIMPLACE modelling framework then inves2gated model sensi2vity 
and performance in predic2ng phenological stages in Bangladesh which is one of the top rice producers worldwide. The 
field measured data includes dates of anthesis and maturity of 20 rice varie2es grown over 3 seasons (2020–2022) and 
4 loca2ons (Cumilla, Mymensingh, Rangpur, and Sunamganj). The Morris and Extended FAST methods were used to 
perform the sensi2vity analysis of different phenological crop parameters in simula2ng anthesis and maturity dates. 
Variety-specific model calibra2on was carried out based on the observed anthesis and maturity dates in Cumilla in 2020 
then the modeling valida2on was performed for the data from remaining seasons and loca2ons. 

Results and Discussion  

The observed anthesis (and maturity dates) varied among varie2es, loca2ons, and seasons which could be explained 
due to the differences in sowing and transplan2ng dates as well as the difference in local temperature and daylength. 
Sensi2vity analysis using the Morris and Extended FAST methods revealed that the parameter cDVRP (development rate 
during panicle development, °Cd⁻¹) significantly influenced anthesis predic2on, with total effect (μ*) and interac2on 
effect (σ) values of 55 and 59 days, respec2vely. Similarly, cDVRJ (development rate during the juvenile phase, °Cd⁻¹) had 
even higher sensi2vity, with μ* = 67 and σ = 85 days. In contrast, cDVRR (development rate during the reproduc2ve 
phase, °Cd⁻¹) was found to be most cri2cal for simula2ng maturity, with μ* = 43 and σ = 86 days. Variety-specific model 
calibra2on based on different combina2ons of those three parameters in 2020 in Cumilla shows a good simula2on of 
anthesis and maturity dates with average root mean square error (RMSE) of 5 and 3 days, respec2vely. However, model 
valida2on across the remaining seasons and loca2ons showed variable predic2on accuracy, with RMSE ranging from 8–
25 days for anthesis and 9–32 days for maturity (Figure 1). With the higher heat unit (HU) as results of the higher air 

mailto:tngu@uni-bonn.de


 
 

 

temperature from transplan2ng to anthesis, the model showed the earlier simulated anthesis dates in Rangpur in 2022. 
Thus, compared to the observed data, there was a systema2c underes2ma2ma2on of simulated anthesis and maturity 
DOY for all varie2es in this loca2on (Figure 1d). The opposite performance of the model was found in Sunamganj (Figure 
1e).  

  
 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comparison of simulated and observed anthesis (blue) and maturity (red) DOYs (day of the year) for twenty rice variePes from modeling 
calibraPon using data from Boro season in 2020 in Cumilla (a) and modeling validaPon using data from Boro season 2022 in Cumilla (b), Mymensigh 
(c), Rangpur (d) and Sunamganj (e). Blue and red lines indicate the linear regression between the observed and simulated anthesis and maturity DOY, 
respecPvely. The abbreviaPon I (unitless), r (unitless), ABE (number of DOY) and RMSE (number of DOY) are agreement index, correlaPon coefficient, 
absolute bias error, and root mean square error, respecPvely. Data showing here is only for selected growing seasons and locaPons. 

Conclusions  

The oryza2000 has been implemented in SIMPLACE and tested with field measured anthesis and maturity data from 20 
rice varie2es. Use of variety-specific parameters derived from one season and loca2on reasonably simulated the anthesis 
and maturity DOY for that selected loca2on and season, however is not generic enough for other seasons and loca2ons. 
This indicates that the model requires the local specific parameters which captures the interac2on of genotype with 
loca2on and seasonal temperature change. 

a) b) c) 

d) e) 
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Introduc8on 

Crop modeling and digital twin concepts benefit from seman2c informa2on directly obtained from images of living 
plants, e.g., branch count, leaf area index, and the number of flowers. Plant segmenta2on is required to separate the 
plant from the background and from other plants, as well as to iden2fy its various parts. Exis2ng tools remain 
inaccessible to most agronomists due to required programming skills and fragmenta2on limi2ng synergy. SegFormer can 
automa2cally detect plant regions, while SAM allows for interac2ve refinement. These refinements can be fed back to 
improve SegFormer’s training, crea2ng a cycle of con2nuous dataset improvement. Current workflows treat them 
separately, breaking this loop. AgriSegment (Tarif, 2025) addresses this gap with (1) a web-based plaPorm that makes 
advanced models accessible to agricultural researchers, and (2) a hybrid workflow where automa2c detec2on supports 
interac2ve refinement, producing high-quality phenotyping data essen2al for parameterizing and valida2ng crop 
models. 

Materials and Methods 

We developed four web apps using advanced segmenta2on models. These include SegFormer for seman2c 
segmenta2on (Elmessery et al., 2024), SAM (Kirillov et al., 2023) for interac2ve correc2ons, Mask2Former for panop2c 
segmenta2on (Darbyshire et al., 2023), and a hybrid method that combines SegFormer’s automa2c point genera2on 
with SAM’s interac2ve tools. The system is built with FastAPI and works in real 2me, suppor2ng different image formats 
and output op2ons. Users can start with automa2c detec2on and then switch to interac2ve refinement if higher accuracy 
is needed. Apps provide plant area measurements, confidence scores, and results (binary masks, overlays, transparent 
PNGs) to support detailed agricultural analysis. 

Results and Discussion 

The hybrid SegFormer-SAM workflow combines automa2c and interac2ve segmenta2on. First, SegFormer automa2cally 
creates seed points with seman2c segmenta2on. Then SAM refines them with user-guided boundary correc2ons. This 
method outperforms single-model workflows, especially when the canopy shapes are complicated and the field 
condi2ons change. Processing speeds ranged from 2-3 seconds per image for automa2c workflows to 8-12 seconds for 
interac2ve refinement on NVIDIA RTX 3060 GPU. Users can export refined masks to retrain SegFormer, enabling 
con2nuous improvement. This dis2nguishes our approach. Evalua2on on 40 field images showed the interface removes 
programming barriers, enabling agronomists to generate training data. Users can select fast batch processing or precise 
interac2ve analysis based on research needs. The source code of AgriSegment is freely available at 
h9ps://github.com/mehran-tarif/AgriSegment 

https://github.com/mehran-tarif/AgriSegment


 
 

 

Figure 1. Automa_c plant detec_on (le�) and interac_ve refinement interface (right). 

Conclusions 

AgriSegment successfully combines automa2c detec2on with interac2ve refinement, providing agricultural researchers 
with accessible tools for high-throughput phenotyping. The feedback loop mechanism, where user refinements improve 
the model over 2me, represents an important advance over fragmented workflows. By making advanced segmenta2on 
models accessible through web interfaces, AgriSegment speeds up high-quality phenotyping data genera2on essen2al 
for crop modeling research, suppor2ng both breeding research valida2on and digital twin development for precision 
agriculture. 
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Introduc8on 

Crop models are powerful tools for assessing the impact of changes in temperature, precipita2on, and atmospheric CO₂ 
on crop growth and produc2vity. While the effect of resource-driven growth limita2ons such as nutrient and water 
availability is generally modelled in present crop models, other factors are ouen overlooked. Pests—including weeds, 
insects, and fungal pathogens—are a major source of yield loss (Hossard et al., 2014; Mack et al., 2023). Yet, many crop 
modelling studies sidestep these effects by assuming op2mal pest control, an assump2on that cannot always hold in 
prac2ce. 

To assess the pest damage in crop models, a dynamic pest module was implemented into the crop model Expert-N and 
evaluated using 14 years of field experiments from a site in Baden-Wür9emberg, Germany. 

Materials and Methods 

To account for the effects of fungal damage on winter wheat, the generic pest model developed by Rasche and Taylor 
(2017) was integrated into the crop model Expert-N. The implemented mechanisms are illustrated schema2cally in 
Figure 1. The dynamic pest module simulates fungal inoculum growth as a func2on of daily temperature and rela2ve 
humidity. The resul2ng inoculum dynamics drive the progression of diseased plant area, which can reduce the leaf area 
index (LAI) or grain filling rate, depending on the selected damage func2on. In this study, two damage pathways were 
considered: leaf blight, which decreases LAI, and Fusarium, which reduces grain filling. 

 

Figure 4. Schematic flow chart of pest damage interactions in the implemented pest module 



 
 

 

The model was applied to simulate crop yields at the variety trial site Tailfingen in Baden-Wür9emberg, Germany. The 
site is located on high-quality loess soil, where water limita2ons rarely occur. As a result, annual yield differences are 
driven primarily by fungal diseases, making it an ideal loca2on for such trials. The dataset covers 14 years of yield 
observa2ons under two management regimes: an ‘op2mal’ treatment with mul2ple pes2cide applica2ons and a 
‘reduced’ treatment with limited fungicide use. The crop model parameters were op2mized to minimize the mean 
absolute error (MAE) in comparison to the measured yields. 

Results and Discussion 

For the op2mal treatment, simula2ons with the standard crop model resulted in a mean absolute error (MAE) of 930 
kg/ha across the 14 years. Although this performance is moderate, it is strongly influenced by a few years with poor 
fits—most notably 2016, when above-average rainfall led to yield overes2ma2on, as the model cannot account for the 
effects of prolonged wet condi2ons and delayed pes2cide applica2on. Incorpora2ng the pest module reduced the MAE 
to 550 kg/ha for the op2mal treatment and 330 kg/ha for the reduced treatment. This demonstrates that the model can 
capture the effects of reduced fungicide applica2on—something not possible with conven2onal models. Importantly, 
even though BBCH stages were not explicitly targeted during calibra2on, including the pest module improved overall 
performance, as crop development parameters no longer had to implicitly account for pest effects 

Conclusions 

Incorpora2ng dynamic pest effects into crop models offers several advantages. It enables the es2ma2on of yield impacts 
under reduced pes2cide use—an important considera2on given the growing emphasis on precise pes2cide reduc2on. 
At the same 2me, including a pest module improves model performance, as it explicitly represents pest damage rather 
than leaving it to be absorbed indirectly during calibra2on. 
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Introduc8on 

In Senegal, yield declines highlight the close links between popula2on growth, declining soil fer2lity and ecosystem 
degrada2on (Faye et al., 2023). As arable land is limited, the cereal-legume associa2on is one of the prototypes of 
produc2ve and sustainable ecological intensifica2on cropping systems (Senghor et al., 2023). Because of the variability 
in the performance of these associated crops, it is essen2al to use agronomic indicators to assess them (Bedoussac and 
Justes, 2011). Dynamic crop models are tools that can help to understand and improve the agri-environmental 
performance of these systems. This study therefore aims to assess the performance of STICS-Combined Crops (STICS-
CA) in simula2ng the growth and development of the millet-cowpea associa2on in Senegal under contras2ng 
experimental condi2ons.  

Materials and Methods 

The data used come from trials conducted at the experimental sta2on of the Centre Na2onal de Recherches 
Agronomiques de Bambey (CNRA) under strictly rainfed condi2ons and with supplemental irriga2on during the 2018 
and 2019 rainy seasons. Millet, a Souna 3 variety, and cowpea, Baye Ngagne, a local seed variety, and 58-74f, a variety 
with high fodder poten2al, were used. Two levels of mineral fer2lisa2on were applied, 0kgN/ha and 68.5kgN/ha. The 20 
cropping situa2ons in 2019 were used to calibrate the model, while those in 2018 were used for independent evalua2on. 
Each plot cons2tuted a simulated crop situa2on based on observed measurements (soil, water, nitrogen, phenology, 
growth).  In 2018, organic nitrogen was es2mated on the basis of composite analyses by block, while in 2019 
measurements were available by plot. Soil water proper2es (field capacity and wil2ng point) were es2mated from 
moisture profiles by selec2ng the maximum and minimum representa2ve values for each depth. Calibra2on was based 
solely on site-specific soil and plant parameters, with the model's generic parameters retained, and was based on a 
sequence ranging from phenological stages (calibrated according to A�older et al., 2013) to LAI, then to water and 
nitrogen dynamics, through to biomass and grain yield. The model's performance was assessed by graphical comparison 
and using sta2s2cal indicators (EF, RMSE, rRMSE). 

Results and Discussion 

The model reproduced biomass (EF=0.8; rRMSE=30%) and acquired nitrogen (EF= 0.9 and rRMSE= 24%) well during 
calibra2on, but its performance dropped during evalua2on, par2cularly for yields (Fig.1). The simula2ons were more 
accurate for millet than for cowpea, which showed greater discrepancies between observa2ons and predic2ons. These 
results corroborate the work of Traoré et al. (2022), confirming the model's ability to simulate biomass in 
intercropping. 
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Figure 1. The above-ground biomass (AGB) and plant nitrogen (plant N) at harvest, as well as the number of grains per square meter and the grain 

yield, were observed and simulated by STICS-AC for the millet and cowpea calibration dataset. 
The dotted black line is a straight line with the equation y = 1/1. The blue line shows the regression of the simulated values against the observed 

values. 

The model reproduced the advantage of millet in intercropping over pure cropping, although it tended to overes2mate 
yields (Fig. 2). It also simulated higher humus mineralisa2on in intercropping (138.15 kg/ha) than in pure cropping 
(110.15 kg/ha), but the lack of details on the calcula2on of the ‘priming effect’ in STICS prevents this difference from 
being fully explained. The model was able to reproduce the effects on millet performance of the choice of cowpea variety 
in the associa2ons, of fer2lisa2on and its interac2on with the associa2on, and of irriga2on. However, it did not capture 
the variability in millet yield observed between the two years of the experiment. 

 

 

Figure 2. The effect of cropping system, cowpea variety, ferPlizaPon, irrigaPon type and year on the observed and simulated grain yields of millet and 
cowpea is shown below. 

n1: Cowpea grain, n2: Cowpea forage, F1: Mineral ferPlizaPon (68.5 kg N ha-1) and F0: No ferPlizaPon (0 kg N ha-1). 

Conclusions 

Overall, STICS-CA reproduces the advantage of millet in intercropping and the effects of fer2lisa2on, variety and 
irriga2on, despite poorly simulated interannual variability. It can s2ll be used for virtual experimenta2on and evalua2on 
of intercropping systems in the Sahel, taking into account its limita2ons. 
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Introduc8on  

Understanding and predic2ng peanut (Arachis hypogaea L.) performance under water-limited condi2ons is crucial for 
improving crop resilience in a changing climate. Peanut breeders are developing new water saver cul2vars that have low 
stomatal conductance, and that reduce transpira2on and photosynthesis as the plant becomes drought stressed (Zhang 
et al., 2022).  Ba{s2 et al. (2017) proposed methods to incorporate drought adap2ve traits into the DSSAT-CROPGRO-
Soybean model and used the model to evaluate the impact of these traits on soybean produc2on in Brazil. The objec2ve 
of this work was to incorporate the water saver trait into the DSSAT-CROPGRO-Peanut model and evaluate the model 
using two sites and two years of field data in Alabama, USA.   

Materials and Methods  

The focus of the water saver strategy was to reduce transpira2on and daily photosynthesis under water stress.  A new 
gene2c coefficient, DT1 was introduced into the Ecotype file to modify transpira2on and photosynthesis under drought 
stress. In the model, once poten2al transpira2on and daily photosynthesis is computed, it is modified based on the 
equa2ons presented in Ba{s2 et al. (2017) for water-saving varie2es 

EOP = MIN (EOP, ((1.0-EXP(DT1*TRWUP*10/EOP)) * EOP)) 

PG = MIN (PG, ((1.0-EXP(DT1*TRWUP*10/EOP)) * PG))    

Where EOP is daily transpira2on without water stress (mm/day), DT1 is a calibra2on parameter in the ecotype file, 
TRWUP is total poten2al root water uptake (cm/day), and PG is daily gross photosynthesis (g/m2/d). For non-water saver 
varie2es, the values of EOP and PG ini2ally computed by the model are not modified. If DT1 has a value of -99, no 
modifica2on of daily EOP and PG takes place.  

 

Experiments were conducted in 2019 and 2020 at the E.V. Smith Research Center of Auburn University at Shorter, 
Alabama (EV, 32°29ʹ N, 85°53ʹ W) and the Wiregrass Research and Extension Center of Auburn University at Headland, 
Alabama (HL, 31°22ʹ N, 85°19ʹ W) (Table 1). Two peanut varie2es (C1: AU-16-28, a water saver, and C2: TUFRunner 297, 
a drought suscep2ble variety) were planted each season in irrigated and dryland plots. Biomass including leaf, stem, pod 
and seed weight, leaf area index and soil water content were collected periodically during the season. Gene2c 
coefficients were calibrated by Zhen et al. (2022) for the irrigated experiments for both loca2ons for phenology 
parameters. New model ecotype parameter DT1 and morpho-physiological cul2var parameters were re-calibrated to 
minimize error for phenology, biomass, pod yield, and seed yield under dryland condi2ons for EV in year 2019/2020, 
and evaluated for HL in year 2019/2020.  



 
 

 

Table 1. Peanut varieties, soil types, water treatments, years of data used for CROPGRO-Peanut model calibration and evaluation. 

Experiment 
numbers 

Loca%ons Peanut varie%es Soil 
types 

Water 
treatments 

Years Data used 

Exp. 1 EV Smith research center at 
Shorter, Alabama (EV) 

C1: AU16-28 
C2: TUFRunner 297 

Loam Dryland and 
Irriga_on 

2019/2020 Calibra_on 

Exp. 2 Wiregrass research and 
extension center at Headland, 
Alabama (HL) 

Sandy 
loam 

Dryland and 
Irriga_on 

2019/2020 Evalua_on 

 

Results  

Model performance was evaluated for two peanut varie2es grown under dry condi2ons at EV and HL during 2019 and 
2020, with and without the drought-tolerant modifica2on (Figure 1). The drought-tolerant version (black points) 
consistently improved agreement between simulated and observed values compared with the unmodified model (red 
points). For phenology, both model versions captured key stages well with most of the points falling along the 1:1 line. 

 

Biomass was simulated with RMSE values of 1177 kg ha⁻¹ (NRMSE = 0.11, D = 0.76) for calibra2on and 2147 kg ha⁻¹ 
(NRMSE = 0.18, D = 0.01) for evalua2on, compared with 1553kg ha⁻¹ (NRMSE = 0.15, D = 0.37) and 2086 kg ha⁻¹ 
(NRMSE = 0.17, D = 0.18) without DT1. Pod yield simula2ons had an RMSE of  454 kg ha⁻¹ (NRMSE = 0.10, D = 0.68) for 
calibra2on and 482 kg ha⁻¹ (NRMSE = 0.08, D = 0.60) for evalua2on, while the unmodified model showed larger errors 
(590 kg ha⁻¹, NRMSE = 0.13, D = 0.37) for calibra2on but lower errors for evalua2on (275 kg ha⁻¹, NRMSE = 0.05, D = 
0.76). For seed yield, RMSE values were 488 kg ha⁻¹ (NRMSE = 0.17, D = 0.37) and 248 kg ha⁻¹ (NRMSE = 0.06, D = 0.83) 
for calibra2on and evalua2on with DT1, compared to 586 kg ha⁻¹ (NRMSE = 0.17, D = 0.37) and 418 kg ha⁻¹ (NRMSE = 
0.10, D = 0.64) without DT1. Overall, these results indicate that the drought-tolerance parameter (DT1) enhanced 
simula2on of both phenological stages and yield-related traits under water-limited condi2ons. 

 

Figure 1. CROPGRO-Peanut model performance for two peanut varieties (C1-C2, listed in Table 1) with (black points) and without (red points) 
drought tolerant modification grown under dry conditions in EV and HL during 2019 and 2020. 

 



 
 

 

Conclusions  

The modified CROPGRO-Peanut model with the new designed DT1 parameter simulated phenological stages of peanut 
cul2vars under drought condi2ons with high accuracy. The modified model gave improved simula2ons of biomass, pod 
and seed yield compared to the original model. These results demonstrate the poten2al of the new drought tolerant 
algorighms to improve simula2on of drought-tolerant traits for peanut improvement. 
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Abstract 
 
The global burden of pathogens and pests on major food crops is es2mated at 17-30%. Despite the relevance of diseases 
and pests many widely used crop models do not yet account for their effects on crop yields. We present results from a 
method development study on crop disease modelling. 
The atmosphere is an important medium for transmission of crop diseases and insect pests, such as, for example, fungal 
pathogens, insect vectors and migratory pests. Recent advances in massively parallelized GPU compu2ng promise the 
poten2al for substan2al performance gains in simula2ng windborne crop diseases and pests that could facilitate also 
advanced coupling of model components and real-2me simula2ons. 
We developed and tested different GPU-based implementa2ons of spa2otemporally explicit crop disease models on 
landscape to global scales. Our approach is based on customized CUDA C++ implementa2ons for general-purpose GPU 
compu2ng, linked with methods from computer graphics (OpenGL) to enable live 3-D visualiza2on of simula2on data. 
This facilitates substan2al speed-up, scalability and flexibility, and it allows for interac2ve exploratory visual data analysis 
of complex feedback between meteorology and pathogen biology during atmospheric transmission. 
The prototype for a GPU-accelerated simula2on tool that we present allows, for the first 2me, real-2me global-scale 
simula2on of windborne crop disease transmission with live 3-D visualiza2on of simula2on data. We report results from 
method development, including performance es2mates and valida2on, focusing on a new atmospheric transport model 
dedicated to windborne crop pathogen and pest transmission that can be applied to different crop health threats, such 
as cereal rusts and potato late blight, and adapted to different insect pests, such as desert locusts and fall army worm. 
The feasibility of coupling the GPU-accelerated atmospheric transport model with stochas2c epidemiological models for 
simula2ng complex disease pa9erns and crop models for yield impact assessments is discussed.  
Our results may serve useful as an ini2al step towards iden2fying suitable modelling approaches for advancing the 
representa2on of crop diseases and insect pests in crop modeling frameworks. 
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Abstract 

 
Model-based assessments of food security risks, future climate change impacts on crop produc2on as well as 

digital farming require adequate simula2on of crop produc2on at different spa2al scales. In many cases, process-based 
1-D simula2on models are used for this purpose and extended to varying spa2al domains. Usually, the temporal and 
spa2al resolu2on of the simula2ons depend on the availability and resolu2on of weather data as well as soil and crop 
management informa2on. In the case of soil informa2on, various data sources are available with different horizontal 
and ver2cal spa2al resolu2on as well as recorded soil proper2es.  

The aim of this presenta2on is to review the sensi2vity of crop models to different sources of soil informa2on 
as found in the literature from regions in Europe as well as in Africa. Therefore, at first, the content of different sources 
of soil informa2on with respect to their content and spa2al resolu2on is compare and, secondly, the effect of the use of 
different data sources and resolu2ons on simulated crop yield is evaluated for different regions in the world 

In most cases, soil informa2on has been gathered from field campaigns (reference or ground truth) as well as 
from secondary soil data with varying spa2al resolu2on. Then the soil informa2on from the different sources has been 
used as input to crop yield simula2ons over several years with different field scale crop models combined with the same 
weather and management informa2on. Simula2on results were compared with respect to their simulated mean crop 
yield as well as their yield stability. 

An example of the effect of different spa2al resolu2on of soil informa2on on mean simulated crop yields is 
shown in Figure 1.   
 

 
 

Figure 1. Relative mean absolute error (rMAE) of simulated silage maize yield for di:erent spatial resolutions of soil input data and years with 
di:erent weather conditions. Boxplots show the rMAE calculated from n = 11 crop models (middle line indicates the mean rMAE across 
models, whiskers are Tukey style and extent to 1.5 times the interquartile range) (Ho:mann et al. 2016) 

 



 
 

 

Implica2ons for the assessment of the impact of climate change or of crop management scenarios at regional are 
discussed. 
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Introduc8on 

Tradi2onal crop models can be adapted to regional scales for climate impacts analysis but are limited by skill in 
modelling phenology (Challinor et al., 2018). Phenology parametrisa2ons are generally based on growing degree days 
(GDD) and temperature response func2ons. Disagreement on response func2ons has previously led to uncertainty in 
predic2ons and data scarcity con2nues to limit progress. Accordingly, we present a new method developed using the 
phenology database of the German Weather Service (DWD, Kaspar et al., 2014), the largest open-source maize 
phenology dataset in the world. We present challenges and progress in transferring learning beyond German 
condi2ons. 

Materials/Methods 

We compare two methods to improve GDD models for regional scale maize phenology using temperature response 
func2ons: (1) the expected thermal response derived from probability theory and (2) neural networks (NNs). 

The ERA5 product (Hersbach et al., 2020) was used as input data. 26,208 anthesis observa2ons from the DWD were 
used for calibra2on, the last three years of which (2022, 2023, 2024) were withheld for evalua2on. Benchmark: A GDD 
model was applied with both piecewise linear and curvilinear Wang-Engel response func2ons (Wang et al., 2017).  

Method 1: The expected thermal response (ETR) refers to es2ma2on of the mean of the response func2on over finer 
scale spa2al varia2on in a grid cell (instead of applying the response func2on to the mean temperature). The ETR was 
calculated by numerically integra2ng exis2ng response func2ons against a probability density func2on. The ETR was 
tested in a GDD model. 

Method 2: NNs were used to replace both the response func2on (as in van Bree et al., 2025) and separately the 
accumula2on step of a GDD model. Maximum and minimum daily temperature, photoperiod and vapor pressure 
deficit were included as features in the NN response func2on.  

Results and Discussion 

• All models performed similarly (R2 approx. 0.3 - 0.4) when fully calibrated, but calibra2on ouen implied 
implausible parameter values; 

• The ETR was op2mal at more physically feasible cardinal temperatures (T_opt 26.7°C) than the benchmark 
model (T_opt 22.2°C); 

• NNs gave a physically implausible response func2on outside the range of temperatures in the dataset. 

When cardinal temperatures were taken from the literature, the ETR performed be9er (R2 0.39) than the benchmark, 
where no variance was explained (Figure 1, right panel). Unlike the ETR (model standard devia2on 8.9 days), the 
benchmark produced an overly dispersive model (model standard devia2on 11.3 days) - it underes2mated low 
flowering 2mes and overes2mated high flowering 2mes. 



 
 

 

When the benchmark was op2mised to the data, the func2on had a gentler gradient for higher temperatures. The ETR 
had a similar shape and performance, but was derived from exis2ng crop modelling knowledge, so should perform 
be9er out of sample (Figure 1, leu panel). 

Neither the NN response func2on nor the NN accumula2on improved on the benchmark or ETR GDD model (Figure 1, 
right panel). Temperature described most of the varia2on in the NN response. The NN response was posi2ve for low 
temperatures and did not decrease above feasible op2mal temperatures, so did not always align with physical intui2on 
(Figure 1, leu panel). Most daily temperatures (98%) were between 7 and 26°C, so NN response func2ons may suffer 
from over-fi{ng outside these regions. Both NN models had lower spread than the GDD models (model standard 
devia2on 6.3 and 7.0 days for the NN response and NN accumula2on respec2vely). 

 
Figure 1. Leh panel: Temperature response curves of  Wang et al., 2017  (blue) and ETR (red) compared to a neural network response func_on 

(shaded grey). The Wang curve and ETR are more physically plausible outside the range of temperatures in the dataset (99th percentile = 26°C). 
Right panel: Skill scores for the different models on the DWD maize phenology database years 2022-2024. The plot is divided by whether models 

used the response curve of Wang et al. with parameters from the literature. 

Conclusions 

The ETR performs as well as exis2ng and NN-based response func2ons but aligns be9er to laboratory experiments. 
Improvements in model performance are ouen accompanied by reduc2ons in variance, a trend which could be 
a9ributed to the data averaging effect. 

The DWD database is large enough to train complex neural networks but is limited by the range of temperatures in 
Germany. Given the size of the dataset, we expect indica2ons about the shape of response curves to be reliable, but 
es2ma2ons of op2mal temperature to be less conclusive. 

We conclude with progress and challenges in implemen2ng the ETR on a broader scale, drawing on transfer learning 
methodologies. We propose integra2on of crop modelling knowledge into machine learning as the best way to address 
data scarcity issues. 
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