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Introduc;on  

Rice feeds over 3.5 billion people, yet faces produc8on-demand gaps due to climate change, popula8on growth, and 
limited resources (FAO, 2023). Irrigated systems dominate global output (85%), relying on managed water and nutrients, 
while rainfed systems (15%) are vulnerable to environmental stresses like drought and temperature extremes (Cassman 
& Grassini, 2020). Prior studies address isolated factors (e.g., nutrient management or consump8on paOerns), but lack 
an integrated global framework linking yield drivers, supply-demand dynamics, and system-specific strategies under 
clima8c pressures. This study develops a global framework to: (1) iden8fy key biophysical and management factors 
driving yield variability in irrigated vs. rainfed rice systems across 1,383 climate zones; (2) map spa8al produc8on-
consump8on imbalances in 83 countries (>90% of global rice); and (3) propose tailored interven8ons for sustainable 
yield enhancement, aligning with SDG 2 (Zero Hunger). 

Materials and Methods 

Using 2020 data from FAO, SPAM, USDA, and GYGA-ED, we analyzed yield (Ya), harvested area, and produc8on at 0.5° 
resolu8on via ArcGIS Pro. XGBoost models predicted Ya based on inputs: clima8c (Tmax, Tmin, Tmean, rainfall, VPD, 
GDD); soil (OC, CEC, pH, EC, ESP, CaCO3, AWC); and management (sowing/harvest dates, maturity, N/P fer8lizers, water 
use). Shapley Addi8ve exPlana8ons (SHAP) quan8fied factor contribu8ons. Models were validated with R² (0.85 
irrigated, 0.95 rainfed) and RMSE (804 kg ha-1 irrigated, 283 kg ha-1 rainfed) on calibra8on data; LOOCV yielded R² 0.50-
0.59. Surplus/deficit mapped as produc8on minus demand (popula8on × per capita consump8on). 

Results and Discussion 

Global rice produc8on is concentrated in Asia, with China (188.83 Mt) and India (128.35 Mt) leading, primarily through 
irrigated systems in fer8le deltas like the Yangtze and Mekong. Irrigated rice covers 63 climate zones, with high-yield 
areas (e.g., CZ 5703: 8.01 t ha-1, 2.08 Mha, 16.67 Mt) suitable for expansion and high-area zones (e.g., CZ 9901: 5.69 t 
ha-1, 4.42 Mha, 25.16 Mt) domina8ng produc8on but constrained by management and biophysical factors. SHAP 
analysis (Figure 1A) reveals N (mean |SHAP|=290.6 kg ha-1) as the top driver, enhancing photosynthesis under 
controlled condi8ons (Cassman et al., 2002), followed by maturity period (211.98 kg ha-1) and Tmean (197.38 kg ha-1), 
where elevated temperatures induce heat stress and reduce yields (Ray et al., 2019). Rainfed rice spans 41 zones, 
prevalent in sub-Saharan Africa and eastern India, with high-yield zones (e.g., CZ 8102: 2.80 t ha-1, 0.39k ha, 1.1 Mt) 
offering growth poten8al and high-area zones (e.g., CZ 9901: 2.19 t ha-1, 8.02k ha, 17.5 Mt) limited by clima8c 
vulnerabili8es. SHAP (Figure 1B) iden8fies Tmax (203.2 kg ha-1) as dominant, increasing evapotranspira8on and drought 
stress (Van Oort & Zwart, 2018), alongside OC (148.2 kg ha-1) for soil resilience (Mishra et al., 2021). Supply-demand 
mapping shows surpluses in export-oriented na8ons like India (+17.46 Mt) and Thailand, contras8ng deficits in high-
consump8on areas like Turkey (-5.60 Mt), Nigeria (-2.15 Mt), and Bangladesh, driven by popula8on density and dietary 
preferences (Maraseni et al., 2018). These dispari8es underscore irrigated systems' efficiency in surplus regions but 
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highlight rainfed vulnerabili8es in deficits, necessita8ng targeted interven8ons like site-specific nutrient management in 
irrigated zones to close 10-15% yield gaps (Pampolino et al., 2007) and water harves8ng in rainfed areas to mi8gate 
climate risks (Jaramillo et al., 2020). 

a) b) 

  
 

Figure 1. SHAP analysis of yield drivers (660 observations, 83 countries): (A) Irrigated rice, with N (mean |SHAP|=290.6 kg ha-1) and Tmean as key 
factors; (B) Rainfed rice, with Tmax (mean |SHAP|=203.2 kg ha-1) and OC dominant. High/low values in purple/yellow. 

Conclusions  

This ML-driven framework iden8fies system-specific yield drivers and imbalances, recommending precision N 
management and alternate wetng-drying for irrigated systems; resilient cul8vars, soil enhancement, and water 
harves8ng for rainfed. Targe8ng high-poten8al zones boosts produc8on, reduces deficits, and enhances food security 
under clima8c pressures. 
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Introduc;on  

Agricultural produc8on is ouen substan8ally reduced by meteorological disasters. With the global impact of climate 
change, ensuring a stable food supply has become a major policy priority for numerous governments. Rice is a staple 
food crop in Taiwan with self-sufficient produc8on under normal weather condi8ons. However, rice produc8on can be 
dras8cally reduced by typhoons or heavy rainfall. Therefore, acquiring real-8me informa8on on total rice produc8on is 
crucial for food supply management. Crop produc8on is influenced by many factors. These factors are predominantly 
assessed using crop simula8on models, for which mathema8cal methods are used to describe the actual growth, 
development, and yield of crops, as well as the interac8ons between environmental condi8ons and crop physiology. In 
this study, a na8onwide dynamic assessment system was established for rice yield. Daily gridded weather data were 
obtained from Central Weather Administra8on. These data were then input into a crop model, referred to as the Decision 
Support System for Agrotechnology Transfer (DSSAT), for regional yield predic8on. This model enables monitoring of 
total rice produc8on in real 8me and provides an early warning for supply shortages, which can serve as a basis for 
market regula8on.  

Materials and Methods  

Real-Time Weather Data Source 

Daily real-8me gridded weather data were con8nually acquired and integrated. This process involved colla8ng and 
interfacing with daily 1 km × 1 km grid data, with meteorological parameters such as daily maximum temperature, 
minimum temperature, solar radia8on, and precipita8on considered. Auer the dynamic crop yield assessment system 
was refined, its rela8onship with actual yields was validated. 

Yield Predic8on System Development 

The proposed system was designed using a client–server architecture and using tools such as Visual Studio 2019, C#, 
and an MS SQL database. Spa8al data were processed using ESRI ArcGIS Engine 10 or a later version to develop an 
independent opera8ng system. 

 

 

 

 

 

 

 

 

 



 
 

 

Results and Discussion  

Although this study used daily 1 km × 1 km gridded weather data, actual rice data are available only in sta8s8cal form 
from administra8ve regions (e.g., townships or villages). Therefore, the gridded data of each administra8ve region were 
aggregated and compared with the crop model’s predicted data. Although a correla8on coefficient of 0.78 was observed 
between the observed and simulated yields, the simulated yield was predominantly higher than the observed yield, 
primarily because the DSSAT model was set to have no fer8lizer or water stress. In real-life scenarios, collec8ng detailed 
informa8on on the cul8va8on condi8ons and growth status of rice in every township is not feasible. However, in the 
present study comparison of cumula8ve data over 5 years revealed an interannual varia8on of approximately ±500 kg 
in rice yield per hectare. In addi8on, the difference between the simulated and observed yields in most of the townships 
fell within this range. Therefore, the yield simula8on results of the proposed system were considered to be acceptable. 

Auer the proposed system was used to automa8cally input daily gridded weather data into the DSSAT model for yield 
es8ma8on, it was used to produce daily na8onwide rice yield forecasts. An agriculture-specific gridded weather 
database was then developed using different spa8al and temporal scales. To forecast future yield trends, daily single-
grid rice produc8on was directly converted into a township scale or aggregated to obtain the total na8onal rice 
produc8on. The goal was to establish a prac8cal dynamic crop yield forecas8ng system. According to the literature, 
disasters are the main factor affec8ng crop yield. Because the crop model used in this study has a limited database, it 
cannot be used to assess typhoons, which represent Taiwan’s most substan8al disaster type. In the future, we plan to 
use historical crop loss data to analyze yield reduc8on when rice produc8on is affected by typhoons at different growth 
stages. This approach can help establish a reasonable calibra8on curve, rendering the proposed system’s es8mates 
closer to actual yields.  
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Introduc;on 

Accurate early-season predic8ons of crop yield, as far in advance of harvest as possible, are essen8al for ensuring supply 
chain stability and global food security in the face of accelera8ng climate change (Becker-Reshef et al., 2020). To date, 
many yield es8ma8on methods u8lize satellite imagery, which is considered a reliable, affordable, large-scale, and 8mely 
data source for monitoring seasonal crop growth. However, the conversion from remotely sensed data into yield, ouen 
done by vegeta8on indices, machine learning, or data assimila8on, greatly suffers from limited scalability, low 
interpretability, or the need for ground data (Sadeh et al., 2024). The use of crop models, which can simulate various 
scenarios represen8ng field-scale agronomic variability in a specific area, has been successfully demonstrated in bridging 
these gaps (Lobell et al., 2015). Here, we developed a versa8le yield predic8on pla}orm incorpora8ng satellite imagery 
(Sen8nel-2), crop model simula8ons (APSIM), and gridded weather data, which does not rely on field-level 
measurements or significant amounts of data. The pla}orm is currently designed to perform op8mally at a spa8al scale 
of a state (level-1 administra8ve division; ~500K-15M ha), and to be easily applied on various field crops, anywhere in 
the world, providing accurate es8mates star8ng from three months before harvest. Such intelligence can serve as a 
reliable decision-support tool for stakeholders in the global food supply chain, therefore assis8ng in maintaining food 
security under a changing climate. 

Materials and Methods 

The versa8le yield predic8on pla}orm is based on matching remotely sensed and simulated Leaf Area Index (LAI) 
seasonal profiles, from sowing to harves8ng. This crop trait has been previously found to be effec8ve in integra8ng the 
two data streams into yield predic8on (Pan et al., 2019). The pla}orm was developed and tested on two major field 
crops, maize and soybean, in the USA, Brazil, Paraguay (both crops), Argen8na, and Uruguay (soybean only). State-level 
reported yields taken from the years 2022-2024 served as the training set, while the 2025 reported yields served as the 
test set. First, the county-level crop area was assessed using per-pixel ML-based crop classifica8on applied to the 
Sen8nel-2 images. The daily LAI values were then es8mated based on VI transforma8ve equa8ons (Sadeh et al., 2019) 
and smoothed into a county-level seasonal profile using harmonic fitng. Second, A different APSIM file was prepared 
for each state, consis8ng of hundreds of possible combina8ons represen8ng the state’s typical range of agronomic 
prac8ces, soils, and cul8vars. Calibra8on of state-specific hypothe8cal cul8vars had been based on the 2022-2024 LAI 
data es8mated previously (and yield data if available), using the Markov Chain Monte Carlo (MCMC) Bayesian approach. 
Calibra8on of maize/soybean cul8vars included modifying 18/13 parameters (both phenological and morpho-
physiological), respec8vely.  The state-level APSIM file was then applied to every county (level-2 administra8ve division; 
~1K-500K ha) within the state, using a county-level summarized gridded weather data (GridMet in the USA, ERA-5 in all 
other countries). Third, the county-level simulated LAI trajectories were matched with the remotely sensed LAI, using a 
feature-based elimina8on algorithm. The algorithm iden8fied the best-fiOed simula8ons and averaged their coupled 
yield to provide a county-level predicted yield as a preliminary step. All county-level predicted yields were then 
summarized, using each county’s es8mated crop area as weights, to calculate the state-level predicted yield.  
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Results and Discussion 

Calibra8on of maize cul8vars, using the 2022-2024 state-scale yield and LAI data as a training set (n=60), provided an 
accurate state-level yield es8ma8on featuring an R2 of 0.98 and RMSE of 0.38 T ha-1. Valida8on of the calibrated cul8vars, 
which was applied on the 2025 season (n=20), maintained the high accuracy of the pla}orm, as evidenced by an R2 of 
0.97 and an RMSE of 0.54 T ha-1. In addi8on, the slope of the regression lines between the predicted and the reported 
yields (0.98 for training, 1.01 for test) indicates no propor8onal bias when compared to the 1:1 line. In soybean, cul8var 
calibra8on using the 2022-2024 seasons (n=81) also provided a high state-level yield es8ma8on accuracy (R2 = 0.97, 
RMSE = 0.13 T ha-1) with no propor8onal bias (regression slope = 0.96). However, the valida8on on the 2025 season 
(n=27) resulted in a slightly reduced accuracy (R2 = 0.88, RMSE = 0.2 T ha-1) with a consistent underes8ma8on (regression 
slope = 0.86). The reduced yield predic8on accuracy in soybean probably resulted from a complex sowing prac8ce in 
some of the South American states, in which there are several consecu8ve sowing windows rather than a singular, short-
term one (as common in maize, or in soybean in the USA). This phenomenon ouen leads to an es8ma8on of a mul8-
peaked county-level LAI profile from the satellite imagery, and to a consequent mismatch with the “correct” APSIM 
simula8ons. Since APSIM (and any other crop growth model) simula8ons are designed to represent a field scale and not 
a broader scale (county, state), characterized by spa8al heterogeneity, one of our main challenges is to bridge this 
es8mated-simulated gap in the yield predic8on process.  

 

 

Figure 1. Predicted vs. reported yields of maize (left) and soybean (right). Training and test sets, both dots and regression lines, are colored in blue 
and red, respectively. Performance metrics are presented for each set. The green dashed line indicates the 1:1 line for reference. 

Conclusions 

This study demonstrates the high poten8al in coupling satellite sensing and crop model simula8ons for accurate yield 
predic8ons of major crop fields. Our results, obtained from different geographies characterized by different weather, 
soils, cul8vars, and prac8ces, prove the robustness of our pla}orm to be applied everywhere in the world. Cul8var 
parameteriza8on, which is the major unknown in the crop modeling process, primarily due to a lack of open-source 
data, was proven to be calibrated using previous years' state-level data. Further research is needed to handle beOer 
scenarios where the county-scale seasonal LAI dynamics are substan8ally different from the simulated ones. Adop8on 
of such a pla}orm will help stakeholders beOer manage the food supply chain in the face of a changing world. 
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Introduc;on  

Egypt, the world’s largest wheat importer (Asseng et al., 2018), relies heavily on domes8c produc8on to safeguard 
na8onal food security. However, its wheat sector faces intensifying challenges under accelera8ng climate change (Yi Yang 
et al., 2024), including rising temperatures, declining radia8on, increased frequency of heat extremes, and sporadic 
compound events such as hot–dry–windy condi8ons. Despite decades of expansion in cul8vated area, improved 
irriga8on, and adop8on of high-yielding varie8es, na8onal wheat produc8vity has shown signs of stagna8on. A persistent 
gap remains between poten8al yields aOainable under op8mal condi8ons and actual farm-level performance, reflec8ng 
the combined influence of clima8c stressors, shortened crop phenology, and regional produc8on constraints. Addressing 
this gap is cri8cal for enhancing self-sufficiency and reducing vulnerability to global grain market vola8lity. This study 
quan8fies four decades of climate-induced wheat yield gaps in Egypt’s breadbasket, disentangles their primary 
environmental drivers, and provides robust mul8-model and mul8-dataset evidence to guide targeted adapta8on 
strategies.  

Materials and Methods  

We employed a mul8-model ensemble of DSSAT-CERES, CROPSIM, and NWheat to simulate wheat yields across 48 
representa8ve loca8ons (1980–2019). Diverse datasets were integrated, including FAO sta8s8cs, Ministry of Agriculture 
and Land Reclama8on (MALR) farmer survey data (>2000 sites), and CIMMYT mul8-environment trials. Climate forcing 
was derived from AgMERRA and ERA5, with daily-to-hourly disaggrega8on enabling the assessment of Hot–Dry–Windy 
(HDW) events. Bias correc8on aligned trial yields with survey observa8ons. Advanced analyses—including principal 
component analysis (PCA), linear mixed-effects modeling, and structural equa8on modeling (SEM)—were applied to 
disentangle clima8c, phenological, and spa8al yield determinants. 

Results and Discussion  

Mul8-model simula8ons and observa8ons show wheat yield stagna8on in Egypt since the mid-2000s (Fig. 1I). While 
poten8al yields remained stable, FAO and survey data reveal gaps up to 5 t ha⁻¹, linked to rising temperatures (+0.034 
°C yr⁻¹) and declining radia8on that shortened crop dura8on and limited biomass. CIMMYT trials (Fig. 1II) consistently 
outperformed na8onal yields, but bias correc8on aligned them more closely with farmer outcomes, highligh8ng the 
value of integra8ng diverse datasets. Stress analysis (Fig. 1III) confirmed Tmax as the main driver, reducing yields by 
~3.2% per °C during grain filling, whereas HDW events were sporadic and less influen8al. Overall, sustained warming 
and reduced radia8on explain yield stagna8on, and adapta8on will depend on heat-tolerant cul8vars, op8mized sowing, 
and targeted interven8ons. 
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Figure 1. Multi-model and multi-source analysis of wheat yield gaps and climate drivers in Egypt (1980–2020).(I) Simulated yields compared with 
FAO and MALR survey data, alongside temperature, radiation, and phenology. (II) Bias-corrected CIMMYT trials aligned with national statistics, 
reducing systematic gaps. (III) Relationships of HDW hours and Tmax with yields from CIMMYT, FAO, and survey datasets. Results show yield 

stagnation since 2007, shorter crop duration under warming, and Tmax as the dominant driver over HDW. 

Conclusions  

Sustained warming and reduced radia8on, rather than sporadic compound stress events, are the dominant drivers of 
wheat yield stagna8on in Egypt. Targeted adapta8on through heat-tolerant cul8vars, op8mized sowing dates, and 
region-specific management is essen8al to close the persistent yield gap and strengthen na8onal food security. 
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Introduc;on 

Despite increasing global aOen8on, deforesta8on remains a persistent challenge, par8cularly due to agricultural 
expansion. Voluntary and market-based ini8a8ves have so far proven insufficient to reverse this trend. In response, the 
European Union adopted the Deforesta8on Regula8on (EUDR), which requires due diligence and geoloca8on data for 
seven key commodi8es to ensure they are deforesta8on-free. A major obstacle to addressing deforesta8on is the lack 
of understanding of the diversity of farmers within forested landscapes. Most exis8ng agri-food system models evaluate 
deforesta8on risk at the na8onal or commodity scale, ouen overlooking differences between farm types. This hinders 
the development of effec8ve and targeted policy interven8ons. To address this gap, the study evaluates how different 
farm sizes contribute to the produc8on of EUDR-listed crops within forest areas, using spa8al datasets on crop 
distribu8on, forest cover, and farm size paOerns.  

Materials and Methods  

Three main data sets were used: the Spa8al Produc8on Alloca8on Model (MAPSPAM) SPAM 2020 v1.0 Global data 
(Interna8onal Food Policy Research Ins8tute, 2024); the Global Map of Forest Cover 2020, Version 2, developed by the 
Joint Research Centre (JRC) of the European Commission (Bourgoin et al., 2024); the global farm size distribu8on raster 
dataset (Mehrabi and Ricciardi, 2021). Google Earth Engine and ArcGIS were used to quan8fy total crop produc8on as 
well as crop produc8on in areas of forest and poten8al forest and total agriculture overlap, across farm size categories 
and countries. 

Results and Discussion 

Figure 1 illustrates the spa8al distribu8on of EUDR-listed crop produc8on within forested areas across 11 farm size 
categories. The maps highlight three key regions where such produc8on is most concentrated: Central and South 
America, West Africa, and Southeast Asia. The distribu8on of farm sizes varies across these regions. In West Africa and 
Southeast Asia, forest-linked produc8on is predominantly associated with small-scale farms, whereas in Central and 
South America, it is more commonly linked to medium- and large-scale farms. 



 
 

 

                             
Figure 1.  

 

Figure 2. 

Figure 2 depicts that small-scale farms’ contribution to the production in forest areas is significantly higher than the 
contribution of any other farm size categories. Small-scale farms annually produce rubber (88%), palm oil (79%), coffee 
(59%), and cocoa (58%) in forest areas, relative to the total forest-linked production of each crop. 

The study also includes a country-level hotspot analysis, identifying countries such as Indonesia, Vietnam, and Côte 
d’Ivoire where smallholders may face high risks of exclusion from EU supply chains. 

Most existing studies have focused on country-level or commodity-level deforestation linkages, without distinguishing 
between the roles of different producer types (Pendrill et al., 2019a; 2019b; 2022a; 2022b; Singh & Persson, 2024). This 
study addresses that gap by providing spatially explicit insights into the contributions of small-, medium-, and large-
scale farms to the production of EUDR-listed commodities and assessing where and to what extent smallholders may 
be most vulnerable to exclusion due to their potential production in forest. 

Conclusions 

This study presents three key findings. First, small-scale farms (<2 ha) are more likely to be located in areas with 
poten8al forest compe88on, whereas large-scale farms (>200 ha) generally exhibit lower levels of forest overlap. 
Second, the produc8on of EUDR-listed commodi8es is predominantly associated with small-scale farms, par8cularly in 
the Global South. Third, a substan8al share of forest-linked produc8on of these crops can be aOributed to 
smallholders. Addi8onally, the results indicate that the EUDR’s country benchmarking does not fully reflect 
deforesta8on risks, sugges8ng a need for more accurate classifica8on.  
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Introduc;on 

Germany faces the dual challenge of expanding its electricity grid while transi8oning to a carbon-neutral energy system 
and maintaining a stable energy supply. High-Voltage Direct Current (HVDC) transmission lines are planned to convey 
electricity from offshore wind farms in the north to the industrial regions in the south. The installa8on of HVDC cables 
requires a specific burial depth, involving construc8on ac8vi8es such as excava8on and backfilling. Beyond soil 
disturbance, underground HVDC cables generate heat during opera8on; at full load, a 525 kV HVDC cable releases heat 
at a rate of 32 W m⁻¹. The overall environmental and agronomic impacts of these underground HVDC installa8ons remain 
poorly understood. The CHARGE research project addresses this knowledge gap through on-farm experiments. It 
examines the effects of both construc8on-related soil disrup8on and opera8onal soil hea8ng on soil proper8es and crop 
performance in Baden-WürOemberg and Bavaria. Recent studies by Trenz et al. (2025a, 2025b) have demonstrated the 
influence of these factors on crop growth and yield. However, crop growth models can provide a valuable tool for 
analyzing the processes that drive crop growth and yield. For this study, a dataset of spring barley (Hordeum vulgare L.) 
will be used to evaluate how crop growth and yield respond to both construc8on-related soil disturbances and increasing 
soil temperatures. The data was integrated into the DSSAT-CSM (Hoogenboom et al., 2019) to quan8fy the combined 
effects of excava8on, backfilling, and heat emission from underground HVDC cables. This model could serve as a 
predic8ve tool for es8ma8ng the poten8al impact of HVDC measures, allowing stakeholders to an8cipate the possible 
effects on crop produc8vity and op8mise mi8ga8on strategies. 

Materials and Methods 

The effects of trench construc8on and soil hea8ng on barley growth and yield were inves8gated using three treatments: 
1) heated trench (HT) with 12 plots, 2) unheated trench (UT) with 6 plots, and 3) control with 24 plots. Destruc8ve 
sampling was carried out five 8mes during the growing season to measure biomass. During each sampling event, canopy 
assessments, phenological stages, and Leaf Area Index (LAI) measurements were recorded. LAI was determined using 
an LAI-2200C (LI-COR, Lincoln, USA). Cul8var coefficients were es8mated using the Control treatment by targe8ng LAI, 
total above-ground biomass, growth stages, and grain yield, using the 8me-series es8mator (Memic et al., 2021). For 
the UT and HT treatment, a significant increase in soil depth was observed. Therefore, the depth of the soil profiles was 
increased to 130 cm, whereas the soil profile of the Control was set to 70 cm, as determined by field measurements. 
Addi8onally, in the HT treatment, an increase in soil temperature per soil layer was added, calculated from the 
differences between the measured soil temperatures of the HT and Control treatments at 15 cm (Δ1.6°C) and 50 cm 
(Δ6.5°C). The difference for the intermediate soil layers was interpolated. The increase in soil temperature was then 
added to the simulated soil temperature in the source code.  

Results and Discussion 

The availability of the measured soil temperature for soil layers 2 and 5 revealed that the ini8al calculated albedo factor 
in the model was too low, at 0.13, resul8ng in an underes8ma8on of the soil temperature. Increasing the albedo factor 
to 0.25 significantly improved the soil temperature model, resul8ng in a higher goodness of fit (Table 1).  



 
 

 

Table 1. Effect of soil albedo factor (SALB) on RMSE and d-stat of simulated vs. observed soil temperature at two soil layer depths.  

Soil ALBedo factor (SALB) 
Soil layer SALB based on ini@al calcula@on (0.13)  SALB adapted in sensi@vity analysis (0.25) 
 RMSE d-Stat RMSE d-Stat 
Soil layer 2  5.47 0.46 1.6 0.94 
Soil layer 5 4.13 0.74 2.1 0.925 

The model behavior of the DSSAT-CSM showed significant changes in vegeta8ve growth and the genera8ve growth phase 
for the described treatments of UT and HT. Furthermore, it reflected the increase in LAI accumula8on and grain yield 
with a high goodness of fit. The observed significant differences in the field for the enhanced development in the HT 
treatment were not reflected.  

 

Figure 1. Simulated and observed values for the treatments Control (turquoise), UT (skyblue), and HT (purple) are shown for growth stages, Leaf area 
index (LAI), and Grain weight.  

Conclusions 

Adjus8ng the soil albedo from 0.13 to 0.25 substan8ally improved the accuracy of soil temperature simula8ons, 
providing a more reliable basis for evalua8ng the impacts of HVDC-related soil disturbances on crop growth and yield. 
While the model successfully captured treatment effects on biomass and yield, it underes8mated the enhanced crop 
development observed in the heated trench. Overall, these findings underscore the poten8al of crop growth models to 
inform decision-making by predic8ng the agricultural impacts of HVDC installa8ons and guiding mi8ga8on strategies. 
However, further tes8ng under diverse condi8ons is needed to strengthen model robustness and applicability. 
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Introduc;on 
Agriculture plays a crucial role in the Indian economy as it provides livelihood to 70% of the rural popula8on and 
contributes to na8onal food security. However, social, economic, and environmental (SEE) factors, along with climate 
change in the region, significantly influence cropping paOerns (e.g., degree of crop diversifica8on and crop produc8vity) 
(Gupta & Kannan, 2024). Crop diversifica8on is recognized as a crucial factor in enhancing agricultural produc8on, 
genera8ng employment opportuni8es, reducing poverty, and ensuring food security (Birthal et al., 2015). Along with 
cropping paOerns, SEE factors, including government policies and domes8c demand, have a significant impact on the 
crop produc8vity of the region. Maharashtra is one of the agricultural states with varying agro-clima8c, socioeconomic 
and environmental condi8ons across the districts. A significant varia8on in crop diversifica8on has been observed across 
the state. Similarly, the produc8vity of the sorghum crop has shown varia8ons across the districts. Therefore, it is 
impera8ve to iden8fy and analyse the degree of the impact of these SEE factors on crop diversifica8on and crop 
produc8vity in Maharashtra. 

Materials and Methods 

This study uses panel data from 1980 to 2017 to study the determinants of cropping paOerns and sorghum crop 
produc8vity in Maharashtra (Singh et al., 2022). The Simpson Diversity Index and Gibb's-Mar8n Index were used for 
calcula8ng the crop diversifica8on index (Singh, 2015). District level data for Crop diversifica8on Index(CDI), Cropped 
Area (000'ha), Fer8lizer Consump8on (Kg/ha), Irriga8on Intensity (%), Cropping Intensity (%), Area under High Yielding 
Varie8es (000'ha), Road Length (000'km), Small Marginal Farms_(No.), Banks Per District (No.), No. of Major Markets, 
No. of Sub Markets, Labour Wages (Rs/Day),  % of Electrified Towns Villages, Cul8vable Waste Land (000'ha), Current 
Fallow Land (000'ha), Average Kharif Groundwater Level (m), Average Rabi Groundwater Level (m), Annual Rainfall (mm), 
Actual Evapotranspira8on(mm), Annual Avg Tmax (0C) was collected. Fixed and Random Effect models were employed 
to analyse diversifica8on and crop yield drivers in Maharashtra. 

Results and Discussion 

The es8mated R-squared value was 0.38, indica8ng that the SEE determinants collec8vely explained 38% of the total 
varia8on in crop diversifica8on. Every 1% increase in Crop area increases crop diversifica8on by 0.36%. Similarly, Fer8lizer 
Consump8on (0.046%), Irriga8on Intensity (0.049%), Cropping Intensity (0.17%), Small and Marginal Farmers (0.12%), 
Current Fallow Land (0.05%), and Average Kharif Groundwater Level (0.032%) had a posi8ve influence on crop 
diversifica8on. The results showed that Road Length (-0.11%) and Cul8vable Waste Land have a sta8s8cally nega8ve and 
significant impact on crop diversifica8on in districts of Maharashtra throughout the study period. The lack of a road 
network constrains market access and, subsequently, crop diversifica8on.                                
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Fer8lizer consump8on, cropping intensity, annual water deficit, agricultural worker popula8on, and area of high-yielding 
varie8es all posi8vely impact sorghum yield. With 1% increase in fer8lizer consump8on, a 0.49% increase in sorghum 
yield is observed. Similarly, an increase in cropping intensity led to a 0.45% increase in sorghum yield. On the contrary, 
the Area under small and marginal farms had a significant nega8ve impact of 2.55%.  

Conclusions  

There's a notable trend in crop diversifica8on, with 11 districts showing an increase and 11 showing a decrease. Key 
factors influencing this include gross crop area, fer8lizer consump8on, and irriga8on intensity, while cul8vable wasteland 
and road networks have a nega8ve impact. Regarding sorghum, a significant yield increase is noted, averaging 25.58 
kg/ha/year across Maharashtra from the agricultural year 2000 to 2022. 13 out of 27 sorghum-producing districts have 
an increasing trend in Sorghum Yield. This is posi8vely impacted by fer8lizer consump8on, cropping intensity, and high-
yielding varie8es, but nega8vely by road infrastructure and small/marginal farm landholdings. 
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Introduc;on  

Accurate crop yield es8ma8on remains a major challenge in smallholder farming systems in Sub-Saharan Africa, where 
fragmented fields, intercropping, and diverse management prac8ces constrain model scalability and precision. 
Persistent data gaps and limited ground-truth observa8ons further restrict generaliza8on across agroecological zones 
(Leroux et al., 2019; Sisheber et al., 2024). While simula8on-based approaches have been applied to address these 
gaps, their integra8on with complementary data sources for opera8onal yield predic8on remains underexplored, and 
many exis8ng methods s8ll fail to capture fine-scale variability (Sisheber et al., 2024). 

Tradi8onal yield surveys are costly and limited in coverage, mo8va8ng recent efforts to combine Earth Observa8on 
(EO), Ar8ficial Intelligence (AI), and process-based Crop Models (CM) for improved predic8on. EO pla}orms supply 
mul8-temporal signals for crop monitoring (Lobell et al., 2020), AI captures non-linear yield rela8onships (Leroux et al., 
2019), and CM simulates crop growth processes that support model calibra8on, valida8on, and interpreta8on 
(Mkuhlani et al., 2024). In data-scarce setngs, uncalibrated approaches increasingly use CM outputs as proxy ground 
truth (Leroux et al., 2019; Lobell et al., 2020). 

This study develops an integrated EO–AI–CM approach for maize yield es8ma8on in Kenya. The preliminary phase 
applies CM to simulate water-limited yields of short-, medium-, and long-dura8on maize across ENSO phases, 
establishing variety–climate interac8ons and genera8ng pseudo-ground truth yield data to inform and benchmark the 
integrated framework in the main study. 

 

Materials and Methods  

Maize yields were simulated using the DSSAT v4.8 crop model. The model was calibrated and validated using measured 
grain and biomass yields, soil, and weather data for Kenya. Model spa8aliza8on was enabled through coupling the 
calibrated models with geospa8al weather inputs from CHIRPS and AgERA5, and soil data from ISRIC. Simula8ons 
covered 22 years (2000–2021) for the three maize varie8es and nine weekly sowing dates. Model outputs were 
aggregated by sowing date, variety, and ENSO phase. ENSO phases were classified using the Oceanic Niño Index (ONI), 
with values > 0.5°C indica8ng El Niño, < −0.5°C indica8ng La Niña, and −0.5°C to 0.5°C classified as neutral. 

These simulated yields will be integrated into regression and deep learning models within the uncalibrated approach, 
and results compared with the calibrated approach. 

 

Results and Discussion 

Across Kenya’s croplands, yields varied by variety and ENSO phase (Figure 1). Long-dura8on varie8es consistently 
produced the highest yields, with clear advantages during El Niño years. The highest yields were observed in the 



 
 

 

coastal and western regions, highligh8ng the combined influence of varietal choice and ENSO condi8ons on maize 
produc8vity in Kenya. 

The results underscore the importance of aligning varietal choice with climate variability to enhance resilience and 
reduce yield gaps. 

 
Figure 1: Average maize yields in Kenya across varieties and ENSO phases 

Conclusions 

This study offers insight into how crop models can be used to es8mate yield under different condi8ons and generates 
simulated yields to feed into the hybrid framework that integrates EO, AI, and CM for yield es8ma8on. Future work will 
incorporate mul8-temporal satellite imagery and crop model outputs to enhance the spa8al and temporal accuracy of 
predic8ons. Ul8mately, the framework will support digital advisory services, climate adapta8on strategies, and food 
security planning for smallholder farming in Kenya. 
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Introduc;on 
Maize-soybean intercropping is a key strategy to enhance food security and resource-use efficiency in sub-Saharan 
Africa, par8cularly for smallholder farmers. In Malawi, soybean is increasingly being promoted as an entry point for 
agricultural intensifica8on (Chiduwa et al., 2024). Current modelling efforts are exploring non-tradi8onal plan8ng 
geometries, such as intercropping and strip cropping, to integrate soybean into exis8ng maize systems (Wu et al., 2021). 
APSIM has previously been applied to evaluate agronomic interven8ons, including crop maturity and plan8ng date, to 
increase soybean produc8vity (Omondi et al., 2023). However, represen8ng these complex systems in crop models 
remains challenging, as model configura8ons ouen require assump8ons that are difficult to validate. Simula8on 
modelling provides a framework to explore system responses and iden8fy the drivers of observed behaviour. Therefore, 
the objec8ve of the study was to assess the capabili8es of the APSIM model in simula8ng maize-soybean intercropping 
systems in Malawi and to evaluate the feasibility of these systems for smallholder farming.  

Materials and Methods 

Field data was collected from maize-soybean intercropping trials at Chitedze, Malawi (13.9815° S, 33.6372° E) from 2022-
2025 (three seasons). Six spa8al configura8ons were tested: sole crops (maize, soybean), within-row intercrops, and 
strip intercropping (1:1, 2:2, 4:4), across three sowing windows (early, medium, late), with standardized fer8lizer and 
crop densi8es. APSIM simula8ons (2005-2024) using observed and grided weather data were used to evaluate 
performance under variable plan8ng dates, spa8al arrangements, and seasonal rainfall. A sensi8vity analysis using the 
Morris method (Campolongo et al., 2007) was conducted to iden8fy influen8al parameters (plan8ng date, number of 
rows per strip, maize and soybean popula8ons, soil organic maOer, maize fer8lizer, runoff response, and soil compac8on) 
and improve model representa8on. Parameter ranges were based on observed treatment variability, and 1800 
simula8ons were run across 20 seasons to capture seasonal variability. 



 
 

 

Results and Discussion 

Model valida8on (2022-2025) showed APSIM captured treatment-level variability reasonably well (Figure 1). The 
valida8on showed strong performance for both maize and soybean. For maize above-ground biomass, observed values 
ranged 1740-20000 kg ha-1 compared with APSIM predic8ons of 2000-19000 kg ha-1. Accuracy was high (R² = 0.78) with 
good efficiency (Nash–Sutcliffe Efficiency (NSE) = 0.77). For maize grain yield, observed values were 200-9700 kg ha-1 and 
predic8ons 700-10000 kg ha-1, also with strong correla8on (R² = 0.82) and efficiency (NSE = 0.73). For soybean, 
performance was similarly strong. Biomass predic8on achieved a very high correla8on (R² = 0.91) and moderate 
efficiency (NSE = 0.56). Observed biomass ranged from 420-2470 kg ha⁻¹, while predicted values were 550-3000 kg ha⁻¹. 
Soybean grain yield also showed high correla8on (R² = 0.92) with moderate efficiency (NSE = 0.53). Observed yields were 
270-980 kg ha⁻¹ compared to predicted yields of 290-1300 kg ha⁻¹. Overall, APSIM reliably captured treatment-level 
variability across sole crops, strip-cropping, and intercropping systems. The model reproduced maize outcomes with 
high accuracy and soybean with strong correla8ons and reasonable efficiency, suppor8ng its capability to simulate 
maize-soybean intercropping under Malawian condi8ons. Sensi8vity analysis (Figure 1) showed that maize grain weight 
was most influenced by popula8on density and seasonal rainfall. Enhanced runoff response and roo8ng depth improved 
performance under weOer condi8ons, with maize Mu* exceeding 11000 kg ha⁻¹. Soybean grain weight showed a posi8ve 
correla8on between Mu* and Sigma, indica8ng higher-yielding treatments had greater variability. Sowing date had a 
strong, season-dependent effect, while site fer8lity and fer8lizer had minimal direct impact. Strip crop configura8on 
(number of rows) had minor effects, while runoff response was more important than soil compac8on. Parameter 
rankings were consistent across years, though 2021 drought highlighted the system’s vulnerability to rainfall deficits, 
emphasizing cau8on in extrapola8ng results. 



 
 

 

 

Figure 1: Observed and predicted maize and soybean yields for all three cropping seasons (a-d),  Morris sensi8vity results 
for maize (e) and soybean yield for 2005 to 2024 (f)  and changes in sensi8vity of (g) maize yield to seasonal rainfall are 
also shown for all chosen parameters at Chitedze Research Sta8on.Hint: Sigma (standard devia8on of elementary effects 
which measures the variability or interac8on effect of a parameter) and Mu* (mean of absolute elementary effects it 
represents the overall influence of a parameter on the output). 

Conclusions  

• Maize-soybean intercropping is a feasible strategy for improving smallholder food security and resource-use 
efficiency in Malawi. 

• APSIM demonstrated strong capability in simula8ng maize and soybean yields and treatment effects in sole 
crops and intercropping. 

•  Plant popula8on, seasonal rainfall, runoff and sowing date had the highest effect of maize and soybean 
yields. 

•  Drought condi8ons (e.g., 2021) highlighted system vulnerability to rainfall deficits, raising feasibility concerns 
under climate stress. 
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