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Introduc7on 

The aim of the present study is to develop, calibrate, and validate a yield predic7on model for processing tomato, using 
data ranging from field experiments to regional assessments. 

Crop growth models are essen7al for food value chains and regional forecasts, as climate change amplifies extremes and 
interannual variability, heightening uncertainty in yield predic7ons from year to year (Yin et al., 2025). For agri-food 
industries, reliable pre-season es7mates across cul7vars, transplan7ng windows, and sourcing regions that converge on 
shared processing facility are essen7al to forecast processed output, op7mize logis7cs, and an7cipate deficits or 
surpluses. Tradi7onal sta7s7cal approaches, constrained by simplified structures and sparse informa7on, inadequately 
represent spa7al heterogeneity in stressors and yield limits, and thus systema7cally under- or overes7mate regional 
yield gaps (Couëdel et al., 2024). This underscores the need for robust and well-validated crop models, integrated with 
local data, spa7ally explicit frameworks, and scalable extrapola7on methods. 

Materials and Methods 

The yield predic7on model (Figure 1) is incorporated into Horta S.r.l. processing tomato Decision Support System (DSS) 
that integrates mul7ple components to accurately simulate crop growth, water and nitrogen balance, and key diseases 
development (e.g., late blight). The model uses site-specific, crop, and cul7var parameters alongside weather variables 
and incorporates field opera7ons such as irriga7on, fer7liza7on, and pes7cide treatments as factors that moderate the 
impact of agronomically manageable stresses. This structure enables es7ma7on of yield (t ha-1) and total produc7on 
(t), suppor7ng scalable, field-specific to regional-level forecas7ng. 

 
Figure 1. Scheme of the processing tomato crop model linking inputs and stress sub-models to yield and production outputs. 



 
 

 

Calibra7on and valida7on used mul7-year, mul7-site datasets. Calibra7on dataset relied on field-plot trials, including 
controlled irriga7on to impose water-stress gradients, nitrogen-rate contrasts, and disease assessments; in selected 
years cul7var contrasts quan7fied genotype-by-stress interac7ons. In addi7on to quan7ta7ve and qualita7ve harvest 
data, specific trials measured in-season biomass par77oning (i.e. roots, stems, leaves and berries at the green, yellow 
and red stages). Proximal sensing provided crop cover and leaf-area es7mates. Table 1 reports loca7ons, years, and 
survey types. Valida7on dataset used commercial fields recorded in the processing tomato DSS, with complete records 
of irriga7on, fer7liza7on, and plant protec7on. Study areas span Italy and abroad over mul7ple years. Each region-year 
marketable fresh yield was evaluated by year, cul7var, sowing period (early/mid/late), and their interac7ons. Parameter 
uncertainty was analyzed with Generalized Likelihood Uncertainty Es7ma7on (Tan et al., 2019). Parameter es7ma7on 
used Differen7al Evolu7on (Mar7nez-Ruiz et al., 2021). Model performance was quan7fied with standard indices, 
including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determina7on (R2). 

Table 1. Field-plot trials by location and year. Codes: W=water-stress assessment; N=nitrogen stress assessment; C=cultivar response; P=proximal 
sensing; B=biomass partitioning sampling; D=disease-stress assessment. 

 Ravenna (IT) Foggia (IT) Utrera (ES) 

2022 W,N,C,P,B,D - - 

2023 W,N,C,P,B,D - - 

2024 W,N,C,P,B,D - - 

2025 W,N,C,P,B,D W,N,P W,N,C 

Results, Discussion, and Conclusion 

To date, the model has been calibrated and validated with 2022–2024 data; 2025 observa7ons will extend the analysis. 
Valida7on on commercial fields yielded MAE < 14 t ha⁻¹ between observed and predicted yields, while regional 
produc7on showed R² > 0.80 across year, cul7var, and transplan7ng period. Because calibra7on data derive mainly from 
Ravenna (Italy), performance is expected to improve with 2025 trials in Foggia (Italy) and Utrera (Spain). 

Through the DSS for agronomic opera7ons, field technicians can consistently and comprehensively enter important 
informa7on into the crop model-DSS system, which in turn helps the agro-industry spa7alize produc7on at regional level 
to monitor and guarantee a reliable supply of processed products within the area of interest. 
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Introduc7on 

Various cropping systems that rely on irriga7on for higher yields constantly face the challenge of knowing and 
an7cipa7ng how much water at what plant development stage is indeed required by plants. By calcula7ng available soil 
water spa7ally according to physical soil proper7es over 7me throughout the growing period based on accumulated 
biomass (plant water demand), water can be managed more efficiently. Crop growth models such as DSSAT can take into 
account various interac7ons occurring in plant×environment dynamics on a daily basis (Hogenboom et al., 2024). Based 
on soil physical proper7es, layer-based soil water holding limits, including lower limit (LL) and upper limit (DUL), are 
calculated and define daily plant available water, following the 7pping bucket approach with respect to soil drainage 
factor and saturated hydraulic conduc7vity (Ritchie 1998). To run a DSSAT simula7on, users require daily weather data 
from the start of the simula7on to harvest, as well as soil characteris7cs and crop management informa7on. To use 
DSSAT for “real-7me” water management, a user can extrapolate historical weather data into the future. Crop model 
simula7ons must be evaluated against sensor and biomass measurements to ensure that crop model parametriza7on is 
correct. Especially in the case of water management, some simula7on outputs can be directly evaluated against soil 
moisture sensor measurements. The advantage of having sensor measurements is that users can evaluate crop model 
parametriza7on of the soil water dynamics (layer-based) and measure current water status in the soil to produce more 
informed management decisions in “real-7me”. This Water Management sojware tool was developed to enable users 
to combine DSSAT irriga7on algorithms with sensor measurements to es7mate “real-7me” in-season plant water 
demand. 

Materials and Methods 

The DSSAT CROPGRO-Chickpea model (v. 4.8.5, Hogenboom et al., 2024) was used to simulate in-season leaf area index 
(LAI) and biomass accumula7on under German condi7ons in 2024. The crop model was calibrated and evaluated within 
other study that is currently under review. In this short study, only part of the results was shown, including LAI, 
aboveground biomass (tops), grain weight, and soil water simula7on at 15 cm depth (second layer in the soil file) for one 
year. 

DSSAT has the capability to determine daily irriga7on based on soil water deple7on and plant available water according 
to two methods: growth stage-controlled automa7c irriga7on and ET-based automa7c irriga7on. The first method, used 
in this study, relies on plant×enviornment×management dynamics for calcula7ng irriga7on requirements of the plant 
per growth stage. The volumetric water content (VWC) variable, in combina7on with a defined soil management depth, 
is used to determine irriga7on at the point when the VWC reaches a lower threshold defined by the user as a percentage 
of the available water-holding capacity (Lopez et al., 2017). 

The Water Management external Python plug-in for DSSAT (test version) was developed to complement the exis7ng 
DSSAT irriga7on method by enabling users to include layer-based soil water sensor measurements in the process of 
determining irriga7on deficits. A user can pass into the DSSAT File-T layer-based soil moisture sensor measurements and 
calculate VWC Irriga7on Deficit (VWCIT) based on field capacity (DUL), permanent wil7ng point (LL), and different levels 
of plant available water content percentages (e.g. 50, 60, 70 % etc.) (PAWC) (Eq. 1). The final objec7ve of the tool is to 
combine model and sensor-based irriga7on triggers into one prac7cal irriga7on recommenda7on (work in progress). 



 
 

 

VWCIT = DUL – [(DUL - LL) * (1 - PAWC)]     (1) 

The current version of the plugin was developed to work with one sensor measurement per soil profile. For this specific 
study, 15 cm sensor readings were used to evaluate the conceptual framework for two sowing dates in 2024. The plugin 
was developed to be used as a “real-7me” decision tool, enabling users to update weather and u7lize future forecasts.  

Results and Discussion 

The agreement between the CROPGRO-Chickpea simula7on and measurements of phenological events, including the 
onset of flowering, first pod, and first seed, was very good, with average errors of ±0.6 and ±3.3 days, respec7vely, for 
the first and second sowing dates. Detailed sta7s7cs for LAI, tops, and grain yield dry maxer are shown in Table 1. RMSE 
and d-Stat. of LAI and aboveground biomass indicated good agreement between simulated and measured data for two 
sowing dates. End of season grain yield was not en7rely simulated sa7sfactory and requires further improvement. 

Table 1. CROPGRO-Chickpea evaluation statistics including LAI, tops ang grain weight for two sowing dates.  

 15 cm 

(cm3 cm-3) 

LAI Tops 

(kg ha-1) 

Grain 

(kg ha-1) 

15 cm 

 

LAI Tops 

 

Grain 

 

Sowing date RMSE d-Stat. 

30.04.2024 0.03 (125) 0.64 (10) 1272 (11) 845 (7) 0.92 0.94 0.98 0.91 

15.05.2024 0.05 (109) 0.61 (9) 377 (9) 734 (6) 0.78 0.95 1.00 0.90 

(n) – total number of observaaons used. 

In Figure 1 the Water Management tool interface is shown with preliminary results. The plug-in is already fully func7onal; 
however, it requires further tes7ng. Figure 1 (lej) shows the tool setup with selected experiment treatment, soil water 
layer 2 (SW2D), and PAWC 50 % (0.5). In Figure 1 (right), LL (LL2D), DUL (DUL2D), measurements, and VWCIT threshold 
line (T-2D) are shown. In Figure 1 (right) soil irriga7on triggered based on soil sensor measurements is indicated with 
star-styled markers, for all measurements below VWCIT (T-2D).  

 
Figure 1. Water Management tool interface (left); simulation output including sensor measurements, LL, DUL and irrigation threshold (T-2D) (right). 

The problem with the irriga7on trigger in the tool is that it is based on one sensor layer depth. Ideally, the en7re root 
zone soil water deple7on should be considered, especially if sensor measurements for mul7ple depths are available.   



 
 

 

Conclusions 

For the data presented, the soil water simula7on line had a very similar trend to the sensor-based soil water 
measurements. This is not always the case and can cause serious problems if VWCIT is based on inaccurate LL and DUL. 
Since soil water content simula7on calculated in the model based on soil proper7es and weather condi7ons is not always 
accurate, a combina7on of crop model-based irriga7on recommenda7on with sensor-based recommenda7on might 
offer more realis7c values. 
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Introduc7on  

According to OECD-FAO (2020), the world popula7on will reach 8.4 billion by 2029, requiring sustainable increases in 
agricultural produc7vity. Brazil plays a key role in global food supply, par7cularly the MATOPIBA region (Maranhão, 
Tocan7ns, Piauí, and Bahia), where Western Bahia has recently become important for its soybean expansion (CONAB, 
2025). This growth highlights the need for effec7ve tools to monitor agricultural produc7vity.Tradi7onally, crop 
monitoring in Brazil is conducted through field surveys by official agencies which is 7me-consuming, and costly, while 
remote sensing enables systema7c crop monitoring with vegeta7on indices that indicate crop vigor.Among the most 
widely used indices are the NDVI and EVI. Recently, the NDRE has demonstrated advantages for crop monitoring. Given 
the agricultural expansion in Bahia, this study aimed to evaluate the use of vegeta7on indices for monitoring soybean 
development throughout the growing season in Western Bahia, Brazil. 

 Materials and Methods  

The study area was Western Bahia, Brazil, which had 2 million hectares of soybean planted in the 2024/2025 crop season. 
The methodology was developed to monitor soybean vegeta7ve vigor by comparing current season NDVI values with 
the historical NDVI and climate 7me series. First, soybean areas were iden7fied using land use map from MapBiomas 
(Souza et al, 2020) from 2019 to 2024. Climate data, including precipita7on, were obtained from the ECMWF forecast 
and used to compose a 30-year historical series (1994-2024). NDVI was calculated using monthly Sen7nel-2 satellite 
imagery from 2019 to 2025. Data processing was carried out in Google Earth Engine using Python scripts. NDVI results 
were analyzed over 7me using a three scale—stable, warning, and alert—based on the GEOGLAM Crop Monitor 
methodology (Becker-Reshef et al., 2020). 

Results and Discussion  

For the 2024/2025 crop season, most municipali7es showed NDVI values at or above historical averages, indica7ng 
favorable vegeta7ve vigor, par7cularly in Baianópolis, Cocos, and São Desidério (Figure 1). With the advance of the dry 
season, precipita7on remained low and consistent with historical averages, leading to reduce NDVI due to limited water 
availability, the end of the harvest, and Brazil’s soybean sanitary void. The integra7on of NDVI and clima7c monitoring 
provides monthly updates on crop vigor, suppor7ng producers in crop development dynamics and adap7ng to 
environmetal condi7ons.  



 
 

 

 
Figure 1. Vegetative vigor map for Western Bahia (green: stable, yellow: warning, red: alert), highlighting Barreiras, Baianópolis, and Jaborandi. 

 

Conclusions  

Monitoring soybean crops using 7me series of satellite imagery and climate data holds significant poten7al for 
agricultural planning and strengthening rural extension services. Its informa7ve nature enables the early detec7on of 
crop issues such as pests, diseases, or water stress. Therefore, vegeta7on indices and clima7c data are valuable tools for 
providing real-7me insights and suppor7ng 7mely decision-making in the field. 
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1. Introduction 

Crop simulation models like DSSAT (Hoogenboom et al., 2024) have become increasingly important for studying 
the eZects of climate change and supporting agricultural decision-making. However, most research relies on 
experimental data, which reduces its applicability in real-world situations where data is limited. For example, 
(Boote et al., 2018) examined how elevated temperatures aZect soybean and peanut yields, while (Debnath et al., 
2021) applied a quantile mapping technique to estimate rice yield gaps across India's diverse agro-climatic zones. 
Studies that use real-time data rather than controlled experiments are few and tend to focus on larger farms, which 
are less representative of typical Indian agriculture. With nearly 89.4 per cent of farming households in India 
cultivating less than two hectares, farmers are marginal and vulnerable to climate-related crop losses. Calibrating 
DSSAT for farms under two hectares can therefore support better resource management. 

This study applies a quasi-experimental approach using primary data collected from 65 smallholder soybean 
farmers in Keshegaon, a drought-aZected village in Maharashtra, India. The objective is to calibrate the DSSAT-
CROPGRO model for soybean cultivation under rainfed conditions with limited available data. Because this 
research relies on real-time field observations instead of controlled experiments, data gaps remain a challenge. 
In-depth details of soil analysis, surface texture, drainage depth, etc and diZiculty obtaining cloud-free satellite 
images, present challenges, as soybean is a Kharif crop dependent on the monsoon, making explicit imagery 
harder to acquire. 

The calibration is validated using two indicators: the diZerence between actual and simulated yields, which 
provides a measure of the model's accuracy in predicting real-world outcomes, and the comparison between 
modelled and satellite-observed soybean growth phenology derived from leaf area index (LAI), which ensures the 
model's ability to replicate the plant's growth stages as observed in the actual plots. 

2. Materials and Methods 

Keshegaon, a small village in Tuljapur tehsil of Dharashiv (formerly Osmanabad) district in Maharashtra, lies 
approximately 32 km from the sub-district headquarters of Tuljapur (Ref; Figure 1A, supplementary table S1). We use a 
structured ques7onnaire to ensure systema7c data collec7on and capture key aspects of farming opera7ons by including 
sec7ons on- (a) basic informa7on of the plot (e.g., Land area, GPS Route iden7fica7on number, previous crop, irriga7on 
type, soil type etc.), (b) management prac7ces (e.g., plan7ng and sowing dates, fer7lizer used, 7llage opera7ons), and 
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(c) economic factors (e.g., input costs, labour charges and other associated expenses). The data acquired through this 
instrument act as inputs to run the DSSAT seasonal models for each plot.  

2.1 Data 

The average yield of the sample size taken is 1867.92 kg/ha with a median of 1700.55 kg/ha, indica7ng a slight right 
skew in the yield distribu7on. The maximum yield observed within the sample is 5922.37 kg/ha, making it the outlier of 
the en7re sample, while the lowest is 681.26 kg/ha. There is considerable variability among the sampled plots, as 
suggested by the 821.13 kg/ha standard devia7on. Most of the sampled plots fall within the ±1 standard devia7on range 
of 2689.05 kg/ha and 1046.78 kg/ha (Ref; Supplementary table S2) 

2.2 Sampling 

Keshegaon has 1144 farmers, 409 of whom are small landholding farmers, and 555 of whom are marginal landholding 
farmers. We could iden7fy 807 farmers from the village's agricultural records based on the beneficiaries of various 
government schemes. Using a stra7fied sampling to ensure representa7on across different landholding categories, our 
study sample consisted of 75 farmers for farm-level data collec7on. It was possible to acquire data and details for 68 
farmers out of our sample of 75. Further, out of those 68 plots, three experienced complete crop loss primarily due to 
excessive water stress and waterlogging condi7ons, leaving us with a sample of 65 farmers for further analysis. These 
65 marginal farmers have below 1 hectare of land, and 10 small farmers have 1-2 hectares of farming land.  

2.3 Analy7cal approach 

SenBnel-2 image calibraBon 

Using a GPS device, we map the 75 farms, process them in Google Earth Pro, and code them as "routes" to identify 
and refer to. Simultaneously, we extract the Sentinel-2 images for the crop cycle dates from 1st June 2024 to 30th 
November 2024. We chose NDVI as the vegetation index and processed the pixel-wise NDVI using GEE and R-
Studio. The NDVI was converted to LAI using the LAIr package (Bajocco et al., 2024); as the equation for Sentinel-
2 is not available yet, the equation for LANDSAT by "Kross et al., et.al 2015" was used, keeping in consideration 
that both the satellites have similar sensors.  

DSSAT model calibraBon 

The extant literature served as the repository for the mandatory field details such as loca7on longitude, la7tude and 
eleva7on. The gram panchayat provided Dharashiv's daily weather data. Again, informa7on on some unknown 
parameters not accessible through primary data was taken from exis7ng literature, while we use arbitrary values for 
some others. For soil depth, we followed (Shaikh & Birajdar, 2015). Motarjemi et al. (2023), in their research on the 
effects of drainage condi7ons on sandy loam soil, men7on the water table depth of sandy loam soil to be 200-300 cm. 
It is a close fit to our loca7on as the soil texture is sandy-loam. Following Nargund et al. (2024), we manually add the 
data for Gene7c coefficients to the soybean cul7var file for JS-335. 

For this study, we define an ideal yield difference as less than 100 kg/ha due to the small size of the farms. A default run 
of all 65 farmers resulted in 4 farmers having the perfect fit of less than 5kg/ha yield difference. We divide the farmers 
into two groups for Run 2, where 25 are isolated from the remaining 65. Mul7ple simula7ons were conducted on these 
25 farmers, adjus7ng various parameters in each run. The farmer was excluded from the list when the model output 
was less than 100 kg. Ajer comple7ng the simula7ons for all 25 farmers, the remaining 40 were processed using the 
op7mized values obtained. 



 
 

 

We convert the Leaf Area Index (LAI) from the DSSAT simulated results into a phenology curve according to sowing and 
harves7ng dates. Ajer cleaning, we compared it with the LAI obtained from the Sen7nel images to include only the 
dates when both DSSAT and satellite data were available. 

3. Results and Discussion 

We categorize the results into three groups based on the yield difference: 'Group-A': 0-10 kg/ha yield difference, 'Group-
B': 10-20 kg/ha yield difference and 'Group-C': >20 kg/ha yield difference. Eight plots fall within Group A, two fall within 
Group B, and the remaining fijy-five plots are in Group C. These results indicate the model's performance in predic7ng 
soybean yields, with Groups A and B showing the closest predic7ons. 

Actual Yield and Simulated Yield 

Route 42 reports an excep7onally high yield at 5922.37 kg/ha with a total produc7on of 3900 kg, making it an extreme 
case scenario, or an outlier among the samples we analyzed separately. However, the rest of the plots fit the model well. 
Among all calibrated plots that predicted yields below 100 kg/ha (Table 1), six plots demonstrated near-perfect 
alignment with observed data, with yield differences of less than 5 kg/ha. The lowest yield difference emerges in Route-
80, with an actual 1202.39 kg/ha yield. At the same 7me, the model simulated 1202 kg/ha, resul7ng in a yield difference 
of just 0.39 kg/ha, achieved in the default run itself. It suggests that the farmer's prac7ces on this plot were highly 
accurate, with management prac7ces aligning with model expecta7ons. 

Four plots reported yields lower than the range of the average yield. Meanwhile, six plots reported yields exceeding the 
average standard devia7on range. However, the total produc7on of these plots is higher than some of their yields. When 
the simulated yield by the model is under the average range but the farmers' reported yield is less than that of the 
model, it indicates crop loss due to mul7ple factors. Route 51, for instance, reported a total produc7on of 1200 kg on a 
1.76-hectare plot, resul7ng in an excep7onally low yield of just 681 kg/ha. Some plots have opted for different cul7vars 
such as DS-228, MAUS-612, and KDS-228; they show lower yields as they stand differently from the JS-335. The varia7on 
in gene7c coefficients associated with these cul7vars may not align well with the corresponding management prac7ces. 

This series of simula7on runs helped iden7fy a set of op7mal input values for soybean cul7va7on in DSSAT under data-
scarce condi7ons. These values, derived from field data, literature references, and itera7ve calibra7on, can be reliable 
defaults when input data are limited or unavailable.  

 



 
 

 

Figure 1: A) Loca3on map of plots in Keshegaon, Maharashtra, created on ArcGIS pro; B) SpagheD Plot for DSSAT derived soybean phenology with 
satellite derived LAI for all plots; C) ScaKer plot of actual yield reported and simulated yield by DSSAT; and D) ScaKer plot of yield reported and max-

med sen3nel NDVI  

 

Route Number Area (ha) Actual Yield 
(AY) (Kg/ha) 

Simulated 
Yield (SY) 
(kg/ha) 

Yield 
Difference 

(AY-SY) 

Route - 19 0.69 1514.27 1515.8 -1.53 
Route - 63 0.22 1357.34 1357.5 -0.16 
Route - 80 0.30 1204.17 1202 2.17 
Route -12 0.51 2376.24 2373.5 2.74 
Route -70 0.24 2517.20 2514 3.20 
Route - 71 0.19 1263.96 1260.5 3.46 

 

Table 1: Plots showing <5 kg/ha yield difference 

 

DSSAT obtained phenology vs satellite phenology 

The model correctly captures the basic 7ming of the crop's phenology, and the satellite data also follows the same 
paxern (Figure 1 B). However, the model underes7mates the maximum LAI compared to the satellite's observed. 
Contrary to the later stages, the satellite fails to show the ini7al stages of growth due to the unavailability of images on 
the sowing to maturity dates. Despite the shortcomings, the DSSAT LAI and satellite-derived LAI show a coefficient of 
varia7on of 0.88 (Ref; Supplementary Figure S3). 

4. Conclusion 

Merging crop models with satellite imagery can oZer deeper insights into crop growth, particularly for smaller 
farms, and improve yield forecasting for better mitigation of crop loss and optimized resource use. By training 
models with satellite-derived LAI data, simulations can be refined for greater accuracy, providing valuable support 
to the crop insurance industry where insurers can assess risks, process claims fairly, and expedite payouts 
following climate-induced crop losses. Together, these eZorts can transform agricultural resilience and 
productivity for smallholder farmers.  
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Supplementary Tables and Figure 

Table S1:  

Basics 
1. Village Name Keshegaon Taluka 
2. District  Dharashiv, Maharashtra 
3. Geographical Area 1644.22 hectares 
4. Agro-clima7c zone Zone 10 (Southern Plateau and hills region) 
5. Total popula7on 4949 (2011 census) 
6. Average temperature 21℃ - 42℃ 
7. Average rainfall 50 cm – 100 cm  

Agricultural details 
1. Total Cul7vable land 1569.30 hectares 
2. Rainfed land 1373.25 hectares 
3. Total Farmers 1144 
4. Large Landholding farmers 180 
5. Small Landholding farmers 409 
6. Land under Kharif crop 1307.00 hectares 
7. Land under Rabi crop 1065.0 hectares 

Supplementary Table 1: Details of study area; Keshegaon 
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Table S2:  

 

Statistic Value Notes 
Sample Size 65 plots Final sample after filtering 
Average Yield 1867.92 kg/ha Mean of observed yields 
Median Yield 1700.55 kg/ha Central tendency indicator 
Maximum Yield 5922.37 kg/ha Outlier in the dataset 
Minimum Yield 681.26 kg/ha Lowest yield observed 
Standard Deviation 821.13 kg/ha Indicates variability among plots 
±1 Standard Deviation Range 1046.78 – 2689.05 kg/ha Most plots fall within this range 

Supplementary Table 2: Data description 

 

 

Figure S3: Scatter plot of DSSAT LAI and Sentinel LAI 
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Introduc7on 

Process-based models are essen7al for predic7ng European grassland dynamics, which have declined since the 1960s 
due to intensified agriculture and land-use changes. Among these, PaSim simulates long-term biogeochemical fluxes 
(Graux et al., 2011), GrasProg targets short-term growth dynamics of intensively managed ryegrass swards (Peters et al., 
2022) and ModVege incorporates vegeta7on traits to capture biomass quan7ty and quality (Jouven et al., 2006). This 
study integrates these models into GraminR, a new R-based model library developed by Joint Research Centre (JRC), 
expanding on the LINGRA model available on the Agri4CAST CGMS pla�orm (hxps://code.europa.eu/agri4cast/lingra). 
GraminR advances this concept by offering a more flexible and scien7fically reproducible framework for ensemble 
simula7ons and model evalua7on. The overarching objec7ve is to establish a harmonised, interoperable and mul7-
model simula7on framework for European grasslands, facilita7ng intercomparison, reducing uncertainty and 
strengthening decision-making for sustainable land management. 

Materials and Methods 

Model integra7on was conducted using a modular R-based workflow with standardised input/output handling. GrasProg 
was re-implemented in R from its original equa7ons, PaSim (Fortran-based) was encapsulated with an R interface and 
ModVege, already in R, was adapted as a proof of concept by being within the GraminR framework. The system supports 
dual deployment: standalone (outside GraminR) for local tes7ng, and integrated (within GraminR) for opera7onal use at 
the JRC. Standardised func7ons were developed to manage climate data (daily/hourly), soil proper7es (texture, organic 
maxer, depth), management prac7ces (mowing, grazing, fer7lisa7on) and vegeta7on traits. An automated repor7ng 
tool was implemented for model evalua7on, using harmonised European datasets with consistent spa7al referencing 
via the INSPIRE grid (hxps://inspire.ec.europa.eu). Climate forcing was provided in NetCDF format, and soil data sourced 
from established databases (Baumann & Escriu, 2019). Model outputs - specifically dry maxer yield - were evaluated 
against independent observa7ons from 12 long-term experimental sites (mul7ple plots) across Europe: five in France, 
three in Italy, and one in Greece, Sweden, Switzerland, and the UK. Performance was assessed using global modelling 
efficiency (EFg), mean absolute error (MAE) and two ensemble-based indicators - mul7-model average (MMA) and mul7-
model median (MMM). 

Results and Discussion 

This study establishes a reproducible mul7-model workflow within GraminR, addressing reproducibility is crucial in 
process-based modelling, especially when models are recoded or wrapped into new environments. Reproducibility -
both methodological and inferen7al - is ensured through standardised inputs, procedures and outputs, enhancing 
transparency and scien7fic rigour.  Valida7on confirmed full consistency between the R-based GrasProg and its original 
version, and between the R-encapsulated PaSim and its Fortran executable, using both legacy (PaSimleg) and updated 
(PaSimnew) configura7ons. Another key advancement is GraminR’s automated evalua7on tool, which streamlines input 
prepara7on, simula7on execu7on and performance repor7ng. It provides three core benefits: (1) reproducibility through 
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transparent, shareable and consistent evalua7on protocols; (2) scalability for large-scale model intercomparison using 
harmonised datasets; and (3) opera7onal integra7on with the Agri4CAST pla�orm for ensemble model evalua7on. These 
developments ensure that models can be evaluated reproducibly, and achieve opera7onal results for agricultural 
forecas7ng and policy support. Quan7ta7ve evalua7on highlights the value of ensemble modelling (Figure 1). 

 

 

Figure 1. Performance metrics for predicting annual dry matter yield (12 sites). (Left) Global modelling efficiency (EFg). (Right) Mean absolute error 
(MAE, kg DM ha⁻¹). Model outputs from the model ensemble (mean: MMA; median: MMM) are compared with four model realisations. 

Across 12 European sites, MAE ranged from 1184 for PaSimnew to 1798 kg DM ha⁻¹ yr⁻¹ for GrasProg. Ensemble outputs 
consistently outperformed single models, with MMA of 1088 and MMM of 1104 kg DM ha⁻¹ yr⁻¹ (Table 1), reducing 
rela7ve MAE from ~60-70% (individual models) to a more manageable ~50% (model ensemble). Ensemble robustness 
was further confirmed by fewer sites with EFg<0: ~35% for ensembles versus >70% for GrasProg and ModVege. 

Table 1. Model performance indicators across 12 European sites (annual dry matter yield). 

Metric MMA MMM PaSimnew PaSimleg GrasProg ModVege 
Number of plots 37 37 37 37 34 34 
Mean MAE (kg DM ha-1) 1088 1104 1184 1286 1798 1465 
Mean relaave MAE (%) 51.5 53.1 58.1 69.6 68.9 62.1 
Mean EFg -0.0 -0.1 -0.3 -0.7 -2.3 -1.3 
Sites with EFg<0 (%) 35.1 37.8 46.0 59.5 70.6 70.6 

While the MMM consistently enhanced overall accuracy, each model showed dis7nct strengths and limita7ons, e.g.: 
PaSim is robust but computa7onally demanding, GrasProg is efficient but ryegrass-specific, ModVege provides detailed 
vegeta7on traits but underperforms under drought condi7ons. This reinforces the value of ensemble approaches for 
accurate, resilient predic7ons and informed agricultural policy (Bellocchi, 2023). 

Conclusions 

GraminR is a major step forward in agroecological modelling as the first interoperable, mul7-model framework for 
grassland simula7on within the European Commission's forecas7ng pla�orm. By recoding GrasProg in R and 
encapsula7ng PaSim, it ensures scien7fic reproducibility and transparency. The integrated repor7ng tool standardises 
data and workflows, enabling large-scale, ensemble-based assessments. This approach enhances robustness, reduces 
predic7on errors and leveraged complementary model strengths, ul7mately suppor7ng sustainable grassland 
management evidence-based agricultural and environmental policy in Europe. 
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Introduc7on Calibri pt 10 

Global food security is increasingly threatened by geopoli7cal unrest and climate change (FAO, 2024). Within this 
context, the extent to which we rely on domes7c food produc7on or trade as a means of achieving food security needs 
to be examined. Timely and reliable crop yield forecasts are vital for agricultural sustainability and food security 
interven7ons that can help to contribute to this balance. Yield forecasts weeks or even months in advance of harvest 
are increasingly common using methods including machine learning (ML), sta7s7cal and process-based crop-climate 
models, and remote sensing data (Schauberger et al., 2020). 

Most crop yield forecasts operate at lead 7mes of just one to two months, ojen too short for meaningful post-harvest 
interven7ons or on-farm management planning. Only a handful of forecasts extend beyond four months, with these 
showing limited predictability (Schauberger et al., 2020). In addi7on, most approaches rely on seasonal climate 
forecas7ng, which has proven value in agricultural decision making, although it can be costly and computa7onally 
expensive. In the United Kingdom (UK), na7onal scale wheat forecasts are based on surveys and historical data rather 
than modelled predic7ons, and forecas7ng studies are rare compared to other European countries (Schauberger et al., 
2020). As a result, post-harvest planning, trade and supply logis7cs, and within season management decisions such as 
fer7liser applica7ons are sub-op7mally informed. 

Materials and Methods Calibri pt 10 

We develop a winter wheat yield forecas7ng system and iden7fy key management decisions that can be supported by 
the model, as agreed with a UK farmer stakeholder network. The General Large Area Model for annual crops with 
Satellite remote sensing data (GLAM-Sat) embeds ML algorithms to predict crop development alongside integra7on of 
biomass es7mated from Normalized Difference Vegeta7on Index (NDVI) data. A logis7cal func7on is used to finish the 
growing season at different lead 7mes. Through dialogue with stakeholders, we examine the key management and 
supply chain decisions that can be informed by the model. 

Results and Discussion Calibri pt 10 

GLAM-Sat shows high skill in reproducing interannual variability of historical yield data when driven by NDVI data for the 
whole growing season (Figure 1A; R2 0.8). Skill gradually reduces as lead 7me increases, with R2 0.66 when making an 



 
 

 

end of season predic7on with NDVI data cut off on April 1st (Figure 1B). Skill is generally significant in Eastern regions 
that grow the most wheat. 

    
Figure 1. Correlation coefficient between observed and simulated yields. A: data for all of growing season. B: four month lead time, i.e. no NDVI 

data from April 1st. 

Conclusions Calibri pt 10 

GLAM-Sat shows skill at lead 7mes of up to four months, and therefore able to inform key UK wheat management 
decisions as iden7fied by stakeholders. For example, between February and April, nitrogen is applied to maximise yield. 
In May and June, addi7onal nitrogen is applied to milling wheats to meet protein targets, with needs shaped by yield, 
soil nitrogen, and markets. Post-harvest planning in the UK can also be successfully informed, with the imports necessary 
to meet wheat demands es7mated and accounted for. Haulage, labour, trading, and storage also hinge on predicted 
tonnage. Our results principally target UK na7onal ins7tu7ons such as the UK’s Department for Environment, Food and 
for Rural Affairs, whose informa7on will ul7mately aid farmers and actors further down the supply chain - improving the 
efficiency, environmental outcomes, and profitability of these decisions. 
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Introduc7on  

Mechanis7c models are increasingly used in digital agriculture to predict crop growth and automa7ze processes for 
precision agriculture. DSSAT (Decision Support System Agrotechnology Transfer; www.DSSAT.net) is one of the most 
powerful and widely applied crop modeling system (Hoogenboom et al., 2019). Its embedded CROPGRO family models 
have been successfully adapted to more than 27 crops (Boote et al., 2021). Beyond its original development for legumes, 
CROPGRO was extended to several crops. However, a fully developed DSSAT-Cropping System Model (CSM)-CROPGRO 
model for onion is s7ll lacking, despite the worldwide interest in such a crop. The current study aimed to adapt and 
develop CSM-CROPGRO model suited to simulate onion growth and predict N management.  

Materials and Methods 

The experimental data were obtained from field studies conducted at Oppeano municipality (Verona province), 
northeastern Italy, during 2021-2025, using varying N rates (138 to 220 kg N/ha). The onion cul7var Boreeana was used 
for model tes7ng. Soils were analyzed for key physicochemical proper7es at the start of each season, and daily weather 
data were collected from a nearby sta7on. Onion growth traits, biomass, and N concentra7on in leaves and bulbs were 
monitored biweekly, and soil N content was measured during the season. The star7ng template was the species, 
ecotype, and cul7var files for the CROPGRO-Soybean model in DSSAT v4.8.5 (Hoogenboom et al., 2024). Species-specific 
parameters were defined based on literature values and measured data in the field (e.g., N content). Model input data 
included soil characteris7cs, weather data, and crop management. Experimental 7me series of growth, N content, and 
yield at harvest were used to evaluate the model performance. Experimental data from 2023 and 2025 were used for 
model calibra7on. Cul7var- and ecotype-specific gene7c parameters were op7mized against observed growth and yield 
data using sensi7vity analysis.  

Results and Discussion 

From the CROPGRO-Onion model calibra7on, species gene7c coefficients reflected its specificity, especially the 
vegeta7ve growth, leaf expansion, and the cri7cal transi7on to bulb growth. Onion sensi7vity to photoperiod governed 
bulb ini7a7on rather than flowering, highligh7ng the need for species-specific parameteriza7on to accurately simulate 
growth and yield. The results showed a close agreement between simulated and observed biomass values (leaves and 
bulbs, Fig.1.), canopy height, and N concentra7on in crop 7ssues, with d-sta7s7cs above 0.84 and low RMSE. However, 
specific leaf area, LAI and the number of leaves per plant require further op7miza7on. 
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Fig. 1.  The red line (simulated) and red points (observed) represent T1 (138 kg N ha⁻¹, 2025), while the green dashed line (simulated) and green points 
(observed) represent T2 (145 kg N ha⁻¹, 2025). The black solid line (simulated) with blue points (observed) corresponds to T1 (168 kg N ha⁻¹, 2023), 
and the black dashed line (simulated) with black points (observed) corresponds to T2 (220 kg N ha⁻¹, 2023). 

Conclusions  

The CSM-CROPGRO model was adapted for Borexana onion by modifying species coefficients and calibra7ng cul7var 
and ecotype files, resul7ng in good agreement, especially for yield and final N uptake. However, improvements are s7ll 
needed for simula7ng crop traits such as aboveground biomass growth and LAI to improve N management throughout 
the crop season. 
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Introduc7on  

Agriculture in water scarce environments faces cri7cal challenges due to reduced and erra7c precipita7on paxerns and 
increased compe77on for limited water resources, severely impac7ng crop yields and agroecosystem sustainability. 
Furthermore, precision irriga7on is facilitated with real-7me simulated forcing from observed plant metrics such as leaf 
area index and soil moisture, enabling dynamic, spa7ally resolved irriga7on recommenda7ons based on accurate crop 
and soil statuses (Zucaro et al., 2024; Ahmad and Sohel, 2025) by means of integrated tools as spa7al decision support 
systems (Rinaldi and He, 2014).  

The aim of the research is to describe and evaluate a decision support systems developed in a water scares environment 
and applied to field crops. 

Materials and Methods  

The Easy Simulator Crop Model (EaSiCroM) decision support system is designed to opera7onalize irriga7on scheduling 
through simula7on of crop growth and soil water interac7ons, enabling adap7ve irriga7on based on precise crop water 
demand. Notably, EaSiCroM’s crop growth simula7ons incorporate the influence of ambient CO2 concentra7on alongside 
irriga7on management and water stress, thus integra7ng environmental and management-driven factors for improved 
crop water use efficiency es7ma7on. 

EaSiCroM accepts user inputs describing crop parameters, soil proper7es, and meteorological data in standard digital 
formats. The system simulates crop biomass accumula7on and canopy development through empirical sigmoid and beta 
growth func7ons, dynamically adjusted for temperature varia7ons and water stress effects as represented by soil water 
deple7on and plant available water values (Garofalo et al., 2020). Users can select from different irriga7on triggering 
mechanisms: fixed irriga7on turns, irriga7on triggered upon reaching soil water deple7on thresholds, or plant available 
water thresholds.  

EaSiCroM supports simultaneous mul7-simula7on runs covering monoculture, crop rota7ons, and complex field 
heterogeneity via plot-specific IDs. The pla�orm allows for long-term simula7ons and incorporates climate forecasts, 
suppor7ng both tac7cal and strategic irriga7on approaches in water scarce environments. 

 

Results and Discussion  

Preliminary studies conducted using EaSiCroM on selected crops such as tomato and coxon have demonstrated the 
system's capability to simulate canopy cover development, biomass accumula7on, transpira7on dynamics, and soil 
water availability in water scarce agricultural systems. Simula7on outputs closely aligned with observed data, confirming 
that EaSiCroM irriga7on scheduling algorithms, triggered by soil water deple7on or plant available water levels, 
op7mizes water applica7on and limits wastage. Precision irriga7on scenarios, leveraging near-real-7me data inputs, 
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effec7vely capture intra-field spa7al variability (Fig. 1), allowing for differen7al water applica7ons tailored to the needs 
of sub-plot areas.  

These preliminary findings underscore EaSiCroM’s poten7al to sustainably improve water produc7vity and maintain crop 
yields under challenging water availability. Its straigh�orward parameteriza7on, modular design, and accessible user 
interface promote broad adop7on by farmers, advisors, and water resource managers, bridging agronomic research and 
prac7cal water conserva7on strategies (Sportelli et al., 2024).  

Conclusions  

EaSiCroM is a scien7fically rigorous and opera7onally flexible decision support tool fostering sustainable irriga7on 
management within water scarce agricultural systems. Its mul7-simula7on framework with real-7me data integra7on 
makes it applicable from precise field-scale management to regional water resource planning. EaSiCroM is freely 
available at: hxps://drive.google.com/drive/folders/1E0Fq5Hk_4u0xaCV1ilXixGHEfSvWL4aK?usp=sharing  

suppor7ng dissemina7on of best irriga7on prac7ces in water constrained agricultural regions. 
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Introduc7on  

Groundwater (GW) is a vital resource for sustaining crop growth, and fluctua7ons in groundwater levels (GWL) directly 
affect agroecosystems (Tao et al., 2022). Small shijs in GWL can significantly affect agroecosystems and farm economies, 
especially under climate change (Shabbir et al., 2023). Therefore, it becomes important to iden7fy the GW deple7on 
hotspots. However, in many regions, GWL data remain limited due to sparse spa7al coverage and discon7nuous 
observa7ons (Tsypin et al., 2024). Recent studies show that machine learning techniques can provide useful GWL 
es7mates; however, these approaches ojen overlook spa7al informa7on such as distances and observa7ons from 
nearby monitoring points. In this study, we examine the added value of including such spa7al covariates by applying 
Random Forest for Spa7al Interpola7on (RFSI). To assess its performance, we compare the RFSI model against a 
conven7onal Random Forest (RF), a spa7ally adapted Random Forest (RFsp), and a Support Vector Machine (SVM). 

Materials and Methods  

We used RF, RFsp, SVM and RFSI to predict and map GWLs at 1 km × 1 km resolu7on in the federal state of Brandenburg, 
Germany. The RFSI model incorporates covariates accoun7ng for (1) observa7ons at the nearest loca7ons and (2) their 
distances, enabling spa7al context within the RF model. GW head measurements from 1,840 piezometers were available 
for 2001–2022. We selected wells suitable for analysis, excluding those affected by anthropogenic or extreme climate 
events. Selec7on criteria included: (1) data consistency, (2) observa7onal uncertainty (RMSE ≤ 0.25 m) and (3) 
con7nuous well func7onality. 

Results and Discussion  

Table 1 shows the Leave-one-out cross-valida7on (LLOCV) accuracy of the four models. RF performed worst due to 
limited covariates and its inability to capture residual spa7al autocorrela7on. RFsp accuracy improved by adding buffer 
distances but was s7ll less effec7ve than RFSI.  RFSI outperformed both RFsp and SVM, likely by bexer capturing links 
between GWLs and environmental covariates (Sekulić et al., 2020). This improvement aligns with (Leirvik and Yuan, 
2021), who found the mean of the five nearest sta7ons most predic7ve for interpola7ng missing surface radia7ve fluxes. 
The trained RFSI model was applied to generate con7nuous, high-resolu7on (1 km²) monthly GWL maps for 2001–2022, 
covering unmonitored sites and piezometers with missing data. As shown in Fig. 1, high R² values confirm  strong 
agreement between simulated and the observed GWLs across sites since 2016. 

 



 
 

 

Figure 1. RFSI-based monthly groundwater depth estimates (blue line) and historical data gap filling (red dotted line) 
 

Table 1. Model type, performance evaluation, hyper-parameters and computing time. 

Model RMSE (m) MAE (m) R2 ntree min.node.size mtry Sample fracHon CompuHng Hme (min) 

RF 4.78 2.847 0.563 586 6 1 0.85 60 

RFsp 4.51 2.836 0.654 485 3 6 0.65 125 

RFSI 3.92 1.866 0.671 250 3 6 0.87 21 

SVM 4.56 3.25 0.432 - - - - 350 
 

Conclusions  

In this study, we proposed and tested a framework for mapping GWL using observa7ons from the nearest loca7ons along 
with their distances as addi7onal covariates in a RF model. The resul7ng gridded GWL database was generated at a 1 
km resolu7on. Our findings show that the RFSI model outperformed conven7onal ML methods (SVM, RF, and RFsp), with 
the added spa7al covariates significantly improving predic7ve accuracy and capturing long-term GWL trends. The 
framework also produced reliable predic7ons for unmonitored sites and piezometers with missing records. Model 
performance from 2016 to 2022 highlights the RFSI approach’s ability to reconstruct historical es7mates using nearby 
observa7ons and environmental variables. 
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Introduc7on 

The Irish ruminant sector is dependent on a grass-based system. However, fluctua7ons in the demand for grass silage 
supplies in recent years have increased interest in supplementary high-yielding forage crops, such as forage maize, 
despite variable annual yields in recent years (CSO, 2024). The cul7va7on of small-grain cereals on suitable soils in Ireland 
ojen yields among the highest grain yields globally. Hence, whole crop small-grain cereals may serve as a stable buffer 
forage supply for the ruminant sector. There have been limited studies that facilitate the evalua7on of small grain cereals 
as forage crop op7ons in Ireland.  This study aimed to es7mate the consistency and spa7al variability of poten7al spring 
barley aboveground biomass yield using a parsimonious crop simula7on model. 

Materials and Methods 

The Teagasc Spring Barley Yield Poten7al Crop Growth model is a simple growth and development model which u7lises 
incident intercepted radia7on, thermal 7me and precipita7on data to simulate aboveground biomass and grain yield on 
a daily 7me step based on benchmark GAI and growth stage (GS) values observed by Kennedy et al. (2017). The 
aboveground biomass yield at GS 85 was extracted as a representa7on of whole-crop barley dry maxer yield poten7al. 
Daily climate data were obtained from seven synop7c weather sta7ons across Ireland from Met Éireann (2009-2023; 
Fig. 1a). The model was calibrated with observed data from nine mul7-environmental experiments. March 15 was 
selected as the sowing date throughout the evaluated years, and the available water capacity of the soil was 285 mm. 
Therefore, the simula7ons represent the consistency of growth and development condi7ons, independent of factors 
that influence the sowing 7me and differences in soil type. 

Results and Discussion 

The simulated aboveground biomass yield ranged between 11.22 t DM ha-1 (Dublin) and 18.29 t DM ha-1 (Galway; Fig. 
1b). The coefficient of varia7on (CV) ranged from 4.3% (Donegal) to 10.3% (Carlow). This difference is likely due to 
Donegal experiencing consistent rainfall and moderate temperatures throughout the period, while the greater variability 
in Carlow reflects greater interannual fluctua7ons in incident solar radia7on and drought events in the simula7on at this 
site.  

For grain yield, the variability was more substan7al than that of aboveground biomass yield, ranging from 7.25 to 24.2%. 
The CV values were greater than 10% for all the sites except Donegal (7.25%). The highest mean simulated grain yield 
was recorded in Donegal and Cork (9.91 and 9.74 t ha-1), whereas the least was simulated from Carlow (8.32 t ha-1; Fig. 
1c). Carlow and Dublin (24.2% and 20.9%) recorded the highest variability as compared to Donegal (7.25%), which 
recorded the least variability.  
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Figure 1. (a) Study sites and spatial variability of simulated spring barley (b) aboveground biomass at GS85, and (c) grain yield at maturity. 

Conclusions 

Simula7on results indicated that the aboveground biomass yield poten7al exhibited lower interannual variability than 
the grain yield at a number of evaluated loca7ons in Ireland. Furthermore, the largest mean yield differences between 
sites tend to reflect the likelihood of drought impact in model simula7ons, when differences in soil profiles and sowing 
date were not considered.  
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Introduc7on  

Since 2019, the Moorepark St Gilles Grass Growth (MoSt GG) model (Ruelle et al., 2018) has predicted daily on-farm 
perennial ryegrass (PRG; Lolium perenne L.) growth in Ireland using local weather and farmer management data 
(nitrogen (N) fer7liser applica7on, pre-/post-grazing sward height, rota7on length). It simulates N dynamics, including 
organic and mineral N, N leaching and gaseous emissions. In the last 5 years, white clover (WC; Trifolium repens L.) ) 
adop7on has increased in Ireland to reduces reliance on synthe7c N fer7liser and help improve farm profitability. Given 
the increasing adop7on of PRG-WC based systems, it is essen7al to adapt the MoSt GG model to accurately predict PRG-
WC sward growth. 

Materials and Methods  

MoSt GG model, developed in C++, is a mechanis7c process-based model running at a 2 m2 scale and a daily 7me-step. 
Based on the original PRG model, the new version adds WC biomass dynamics, biological N fixa7on (BNF) and inter-
species compe77on. While PRG relies on soil mineral N uptake only, WC balances soil N with atmospheric N fixa7on, 
which increases as soil mineral N declines (Ledgard et al., 2001). The growth and environmental response func7ons use 
species-specific parameters with new func7ons developed for WC N nutri7on. The outputs include daily growth, biomass 
par77oning, N and water dynamics, BNF and sward N content.  
 
Simula7ons were run over 21 years (2003-2023) of Teagasc Moorepark synop7c weather sta7on data. A heavy (HS) and 
a free draining (FD) soil were compared. Two sward types were simulated (PRG- only and PRG-WC) under rota7onal 
grazing (21- or 30-day interval), with three N fer7liser rates compared (0, 150 or 250 kg N ha-1; 0N, 150N, 250N). Cow 
number per grazing rota7on was automa7cally adjusted to graze the available biomass (>4 cm) in a day with a fixed 
intake of 16 kg DM cow-1. 

Results and Discussion  

Annual herbage yields were always higher for PRG-WC than PRG-only. The yield response on FD soils to addional N 
fer7liser applica7on was greater for PRG-only than PRG-WC (+21 vs +18 kg DM kg N-1; from 0 to 250N), but PRG-WC 
produced 3 t DM ha-1 more than PRG-only at 0 and 150N, with the gap narrowing at 250N. Similar results were 
observed on HS soils, with higher absolute yields for PRG-WC (Fig. 1C). The model reproduces the benefit of clover at 
low N and the dimishing return of increasing N fer7liser. The greater PRG N response leads to PRG outcompe7ng WC, 
with WC content falling from 24-30% at 0N to 5-18% at 250N, consistent with field data (e. g. Burchill et al., 2014). At 
150N, PRG-WC yield outperformed PRG yield at 250N by 7% on average, showing the efficiency of BNF as a subs7ture 
for N fer7liser. The PRG-WC supported more grazing days, par7cularly on HS soils, and longer rota7ons (Fig. 1A). The 
year-to-year and seasonal variability was well reflected (Fig. 1B), for example, the 2018 summer drought affec7ng 
growth. Peak growth was reached earlier for PRG-only swards than PRG-WC swards. The BNF declined as N fer7liser 
inputs increased (fig. 1D), from 70-81 to 32-48 kg N ha-1, due to a reduced WC content and its simulated inhibi7on by 



 
 

 

soil N (Ledgard et al., 2001). On HS, PRG-WC produced more despite less WC and BNF than on FD soils. This is partly 
explained by more N leached in FD soils and lower N mineralisa7on rate. 

 
Figure 1 : (A) average annual number of cows grazing days and standard deviaaon for each treatment combinaaon (light grey is 0N, dark grey is 

150N and black is 250N) ; (B) average growth of PRG-WC swards at 150N (black) and PRG swards at 250N (red) for the average of the period (doVed) 
and in 2018 (summer drought; plain);  (C) comparison of cumulaave growth on PRG+WC swards (PRG in black, WC in grey); and (D) total N input (N 

feraliser (black) + N fixaaon (grey)) to PRG-WC swards under a 30-day grazing rotaaon for all combinaaons of soil types (FDS = free drainins, HS = 
heavy) and N rates. 

Conclusions  

A new sub-model was developed for the MoSt GG model to simulate growth on PRG-WC swards. Evalua7on shows that 
it can simulate BNF and predict herbage yield, quality, and seasonality as expected.  
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Introduc7on  

Nitrogen (N) fer7liza7on is a key factor in achieving high crop yields, ensuring product quality and maintaining soil 
fer7lity. For an economical and environmentally friendly crop produc7on, it is necessary to apply the op7mum amount 
of nitrogen fer7lizer in line with the crop’s N-demand. In prac7ce, however, determining the op7mum fer7lizer rate is 
s7ll a challenge, as numerous influencing factors have to be taken into account, e.g., the targeted crop yield or the 
content of plant-available mineral nitrogen in the soil. Therefore, this contribu7on presents a model-based approach for 
site-specific nitrogen fer7liza7on, which takes into account the variability of crop growth and nitrogen uptake based on 
sensor-derived soil proper7es and weather forecast during the growing season. 

Materials and Methods 

The approach was first developed and tested on a 29-hectare arable field in Brandenburg, Germany, within a crop 
rota7on (winter tri7cale (TriBcum aesBvum), winter rye (Secale cereale), sorghum (Sorghum bicolor) and winter tri7cale) 
between 2019–2022. Nitrogen uptake was modelled and N-fer7liza7on prescrip7on maps were computed for winter 
tri7cale in 2022. For the biomass and grain yield simula7on, the "Model for Nitrogen and Carbon Dynamics in Agro-
ecosystems" (MONICA) was used (Nendel et al. 2011). High-resolu7on (10 m) maps of clay, silt, and sand in 20 × 10 cm 
layers were derived from inverted apparent electrical resis7vity (ERa) data collected with the Geophilus mul7-sensor 
pla�orm (Lueck & Ruehlmann, 2013) and calibrated using soil samples taken from 3–5 horizons in 10 representa7ve 
profiles (Roudsari et al., submixed). Together with soil organic carbon (SOC) maps of the topsoil derived from Sen7nel 2 
bare soil images (Schröter et al. 2025), the soil texture maps were used to derive soil physical and hydrological 
parameters (bulk density, pore volume, field capacity and permanent wil7ng point) by applying pedotransfer func7ons. 
Daily weather data (precipita7on, temperature, radia7on, windspeed and rela7ve air humidity) was taken from the 
German Meteorological Service (DWD) for historical data and for prognos7c data from the European Centre for Medium-
Range Weather Forecasts (ECMWF). Modelled soil moisture was validated with soil moisture monitoring data from 2023 
and 2024 of the 10 profiles using TDR and PR2 probes (UP Umweltanaly7sche Produkte GmbH, Coxbus, Germany). The 
tri7cale yield forecast was modelled once using the daily documented weather data and once the prognos7c weather 
data. The evalua7on of the biomass and yield predic7ons were compared with harvester monitoring data. Results in the 
N-requirements and associated costs were compared to a field uniform fer7liza7on strategy. 

Results and Discussion 
The root mean square error (RMSE) for the 3D clay map was 13.9% (coefficient of determina7on, R² = 0.52), for sand 
14.1% (R² = 0.71), for silt 4% (R² = 0.78), for SOC 0.27% (R² = 0.71) and for the modelled soil moisture distribu7on at 
the survey dates 4 Vol% (R² = 0.75). The crop yield, N-crop removal and the N-requirement were modelled for the first 
N fer7liza7on date (1 March 2022), the modelled mean yield of the field was underes7mated by only 0.22 t ha-1 using 
the documented daily weather as reference. Using the prognos7c weather, the mean yield devia7on was 0.86 t ha-1. 
However, the amplitude of spa7al differences was not yet simulated adequately in both predic7ons. Nevertheless, the 
predic7on of crop yields was used to es7mate the expected N removal at the harvest date. While the field uniform 

mailto:boenecke@igzev.de


 
 

 

fer7liza7on approach resulted in a N quan7ty of 135 kg N/ha, the quan77es calculated using the site-specific approach 
varied between 40 kg N ha-1 in the low-yielding sandy areas and 130 kg N ha-1 in the loamy areas having an average of 
101 kg N ha-1. The site-specific fer7liza7on resulted in es7mated savings of around 51 € kg-1 ha-1 compared to the 
"tradi7onal" fer7lizer requirements. 

 

 
Figure 1. Left: Workflow to determine variable N-fertilization. Right: spatial variability of the original yield harvester monitoring (upper left), 

modelled yield data based on dicumented weather data (upper middle), modelled yield prediction based on weather prognosis (upper right), N-crop 
removal of the triticale yield (lower left), model based N-deman (lower middler) and farm based field uniform N-demand (lower right). 

Table 1. Overview variability of yield modeling compared to harvester monitoring data (SD = standard deviation). 

 Min Max Mean SD 

Yield mapping harvester 0.2 10 5.7 1.8 

Yield modelling with documented weather data 3 6.7 5.5 1.4 

Yield predicaon with prognosac weather data 3.7 7.9 6.6 1.5 

Conclusions 

The developed approach can be used as a decision support for site-specific nitrogen fer7liza7on. However, the need for 
improved model parameteriza7on and calibra7on of the underlying soil texture and SOC maps as well as soil moisture 
modeling is required to address spa7al heterogeneity more adequately. Savings in the total fer7lizer costs of approx. 
25% could be realized as 35 kg ha-1 more fer7lizer was applied than necessary in the conven7onal approach.  
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Introduc7on  

PastureBase Ireland (PBI) is a web-based grassland management decision support tool that was first developed in 2013 
for Irish grassland farmers. The secondary purpose of PBI is to serve as the na7onal grassland database for Irish grassland 
farmers. PBI is designed to allow grassland farmers to improve their grassland management on farm. It offers farmers 
‘grassland decision supports’ and stores the data from dairy, beef and sheep farmers in a central na7onal database. In 
2024, there was over 14,000 farms registered on PBI. Approximately 50% of all pasture covers are now uploaded from 
the PBI mobile applica7on where users with more than 25 annual covers on PBI use the mobile applica7on for most of 
their data recording events. There has been a clear, con7nual increase in grassland measurement on dairy farms over 
7me. The integra7on of the Moorepark St Gilles (MoSt) grass growth model into PBI started in 2023 and will be rolled 
out fully in the next years. The objec7ves of using PBI on grassland farms is to focus on op7mising pasture u7lisa7on 
across all ruminant sectors, improving farm produc7vity, promo7ng sustainable grazing prac7ces and suppor7ng 
evidence-based decision-making on Irish grassland farming. This paper inves7gates the grassland management 
performance from a 11 year dataset of a sample of grassland farms (n = 163) taken from the PBI database and describers 
their performance from 2013 -2024. 

Materials and Methods  

PastureBase Ireland 

Pasture Base Ireland (PBI) (Hanrahan et al., 2017) has a range of grassland support tools available to farmers to assist in 
short-, medium- and long-term grassland decisions. Each year there is a growing number of farmers using the 
applica7on. In 2024, over 142,000 farm covers were recorded, an increase of 43,000 since 2022. There is a clear, and 
con7nual increase in grassland measurement across the country, which has been aided by the grassland measurement 
requirement for farmers with a nitrate’s deroga7on plan. Currently over 2,000 spring/autumn rota7on planners are 
completed in PBI per year. There are over 11 Applica7on program interfaces linked from external Agri industry partners 
linked to PBI, these include Jenquip plater meter, Grasshopper plate meter, dairy Co-ops, Feed and soil analysis labs etc. 

On Irish farms clover is now becoming more popular, due in part to reduc7ons in chemical N allowances on farm. A 
number of new decision support tools have been developed in PBI to assist strategic decision making regarding nutrient 
applica7on, including the ‘Nitrogen Planner’, Nitrogen Cycling calculator. Conserving adequate feed levels for the winter 
period is a growing challenge for farmers in recent years due to grass growth variability and climate challenges. A key 
tool has been developed in PBI to allow farmers to quan7fy fodder supplies on their farms. PBI has developed as an 
influen7al sojware tools that farmers can use to bexer manage their grassland systems. 

Results and Discussion  

Grazing management and grass DM produc7on data from 163 farms recording >35 covers on PBI annually over an 11-
year period (2014 – 2024), annual pasture growth averaged 13.2 t DM/ha during that period, with 7% varia7on in DM 



 
 

 

produc7on (+/- 907 kg DM/ha) between years. Spring pasture DM produc7on had greater varia7on compared with 
summer and autumn (Table 1). On average, over the 11 years, spring (Jan – April) pasture DM produc7on was 1.8 (+/- 
0.3) t DM/ha, summer (May – July) DM produc7on was 6.2 (+/- 0.5) t DM/ha, and autumn (Aug – Dec) DM produc7on 
was 5.3 (+/- 0.3) t DM/ha. The average number of days at grass ranged from 274 to 296 days between years, with an 
overall mean of 285 grazing days.  

Figure 1. Weekly grass growth on PastureBase Ireland dairy farms (2013- 2024) 

 

Conclusions  

PastureBase Ireland is a mul7-purpose grassland tool that allows farmers to improve grazing management, fodder 
security, and nutrient management on the farm. It is an ever-evolving decision support tool. The objec7ve within PBI is 
to con7nue to add new features to help farmers’ usability of the applica7on and to improve management prac7ces on 
farm. Future developments that are planned include greater incorpora7on of the MoSt grass growth model into the 
applica7on. The future of grassland systems will depend on the ability to increase herbage produc7on within the 
constraints of reducing chemical N fer7liser inputs. Using available technologies and achieving grazing management 
targets will be cri7cal to mee7ng these challenges. PastureBase Ireland may in the future develop as a European 
grassland database. 
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Introduc7on 

The Upper Syr Darya Basin is a cri7cal agricultural region in Central Asia that depends heavily on the Syr Darya River for 
irriga7on, par7cularly for water-intensive crops such as coxon. Increasing and, at 7mes, excessive pressure on water 
resources has led to severe shortages, inefficient prac7ces, and widespread water insecurity, as drama7cally 
demonstrated by the environmental collapse and near disappearance of the Aral Sea (Berdimbetov et al., 2020; Gupta, 
2020; Hoekstra, 2020; Loodin, 2020). Despite formal transboundary agreements governing water alloca7on among 
riparian na7ons, effec7ve coopera7on at mul7ple governance levels remains highly constrained (Abdolvand et al., 2015). 
This lack of collabora7on hampers data sharing, impedes evidence-based decision-making, and undermines policy 
development (De Keyser et al., 2023). As agriculture accounts for approximately 90% of total water withdrawals in the 
region, precise spa7al quan7fica7on of the crop water footprint, dis7nguishing between green (rainfed) and blue 
(irrigated) water use is essen7al for informed water-resource management. This study aims to quan7fy the crop water 
footprint, analyze interannual variability, and iden7fy hotspot areas to support policy interven7ons. 

Materials and Methods  

The ACEA crop water produc7vity model, developed by Mialyk et al. (2022), is implemented in Upper Syr Darya Basin at 
an enhanced spa7al resolu7on of 5 arc-minutes for the period 2000–2019. ACEA is based on AquaCrop-OSPy v6.1, which 
mimics the daily crop growth and ver7cal soil water balance. The model dis7nguishes, green and blue from capillary rise, 
and irriga7on, enabling precise green-blue water accoun7ng throughout the crop growing season. The model input 
datasets like climate forcings, CO2 concentra7on, groundwater table, and crop-specific parameters were consistent with 
the original setup. The soil layer was updated in the model with Soil Grids data version 2.0 (Poggio et al., 2021) to improve 
the spa7al resolu7on of soil layer. Model outputs are analysed for the historical period 2000–2019 to capture interannual 
variability and spa7al paxerns in crop water use and also computed at the monthly scale.  

Results and Discussion  

Spa7ally explicit maps of crop water footprint are expected to reveal significant varia7on in blue water consump7on, 
especially in coxon irriga7on systems across the Upper Syr Darya Basin. The ACEA implementa7on is an7cipated to 
provide quan7ta7ve separa7on of consump7ve green and blue water footprints at high spa7al resolu7on. This capability 
will help iden7fy areas of inefficient water use and support the development of scenarios to improve irriga7on efficiency. 

Conclusions 

Regional ACEA modeling provides a robust framework to address cri7cal data gaps in quan7fying consump7ve crop 
water footprints at high spa7al and temporal resolu7on in the Upper Syr Darya Basin. The process-based approach 
enables accurate separa7on of green and blue water consump7on components, essen7al for developing targeted water 
conserva7on strategies in this water-scarce region. Results will provide essen7al insights to op7mize water alloca7on, 
improve irriga7on management efficiency, and guide sustainable agriculture prac7ces, contribu7ng to regional water 
security. 
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Introduc7on 

CHN, a crop model developed by Arvalis, simulates daily crop state and its growth forecast at field level. One of the main 
uses of its outputs is to manage nitrogen fer7liza7on on winter wheat. It is coupled with Sen7nel 2 data (Piquemal et 
al., 2020) and the repeated satellite acquisi7ons es7mate regularly Leaf Area Index and Nitrogen Content, variables used 
to confirm or correct model simula7ons during the cropping season. 

Deployed at large scale, CHN in certain plots can simulate a wrong es7ma7on of soil nitrogen (SN) stock, variable which 
play a key role in building nitrogen input advice. The best proxy indicator to iden7fy fields with a wrong es7ma7on of SN 
stock is the difference between plant nitrogen quan7ty simulated by CHN and the one measured using satellite data 
(=ΔQNf) at flowering stage (last date of nitrogen input management). If ΔQNf exceeds 20 kgN ha-1 on a field, SN stock 
needs to be adjusted. 

The aim of this study is to build and evaluate a method to predict ΔQNf with indicators calculated at early stages in 
winter wheat cycle. In campaign, it will be used to flag fields that need SN stock adjustment. 

Materials and Methods 

259 fields of different trials network located in France are used. They cover all metropolitan area from 2020 to 2024. For 
each field, we get back CHN outputs with or without using Sen7nel 2 data in the model, calculate ΔQNf at flowering 
stage and tag fields that need SN stock adjustment. 

Many indicators describing the discrepancy between model output and sensor data are calculated at three dates in the 
beginning of crop cycle (for instance, the difference between biomass simulated by CHN and the one calculated with 
sensor data). Regression trees using CART (Breiman et al., 1984) are built on these predictors to iden7fy thresholds that 
can separate tagged fields from the others. 

Results and Discussion 

Table 1 presents the performance on an independent dataset of previous indicators to flag fields with high ΔQNf at 
flowering stage. Indicators detect 76% of all fields tagged. Nonetheless, some tagged fields are s7ll non detected, and 
12 non-tagged fields are detected. This can be linked to low satellite coverage, bad quality acquisi7ons or specific 
environmental condi7ons on these fields. 

 
 Tagged fields (ΔQNf > 20 kg N ha-1) Non-tagged fields (ΔQNf < 20 kg N ha-1) 

Posiave Detecaon 53 12 

Negaave Detecaon 16 15 

Table 1. Confusion matrix of the indicators used to predict fields which need SN stock adjustment (= tagged fields) 
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Conclusions 

The detec7on method developed shows great performances to iden7fy fields that need SN stock adjustment. 
Nevertheless, it is mainly dependent of the coverage and quality of satellite data, especially around the dates used for 
predic7on. Despite the high number of years considered in the study, the ques7on of the stability of indicators and 
associated threshold from one year to another can be limi7ng, par7cularly in case of year with atypic environmental 
condi7ons. 
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Abstract 

Crop models integrate diverse datasets; weather, soil proper<es, crop gene<cs, and management 
prac<ces - to predict outcomes such as biomass accumula<on, phenological stages, and final yields. 
They enable scenario tes<ng without the high costs of repeated field trials and allow lessons to be 
transferred across environments. However, in sub-Saharan Africa (SSA), modelling efforts are 
constrained by data scarcity. This review assesses progress on the use of crop modelling in decision-
making and innova<on in SSA, highlights persistent challenges, and outlines areas for improvement. 
Evidence suggests that the limited availability of reliable historical data, par<cularly at the required 
temporal resolu<on, is a key barrier. Moreover, uncertain<es in model calibra<on, climate 
projec<ons, and management assump<ons further limit the reliability of future yield predic<ons. 

Key words: complexity, model coupling, data sources, soil variability, future management 

1. Introduc/on 

Crop modeling has high potential to play a crucial role in modernizing agriculture, enabling science 
based and data-driven decision-making and enabling innovation (Boote et al. 2017; Corbeels et al. 
2018).  Crop modelling involves the use of mathematical and computational simulations to 
represent crop growth, development, and yield under varying environmental, genetic, and 
management conditions. These Crop models are broadly classified into empirical (statistical 
relationships) and process-based (mechanistic, simulating physiological processes) types. By 
functioning as virtual laboratories, they allow researchers, policymakers, and farmers to explore 
scenarios and optimize management strategies without costly or time-intensive field trials. In this 
paper, I highlight four major areas that need attention for improve model use in decision making 
and innovation in Africa. 

2. Challenges of model applica/on in SSA 

2.1 Abstrac/on vs. complexity: Most models are an abstrac<on because they are simplified, 
incomplete representa<ons of complex reality, focusing on specific features while ignoring others 
to achieve a par<cular goal or gain understanding. However, SSA has very diverse socio-ecological 
condi<ons. This diversity is underpinned by a combina<on of biophysical factors such as soils and 
climate, socioeconomic factors such resource ownership and access capital and markets as well as 
farmers’ produc<on orienta<on (produc<on for cash vs. sustenance). Soil degrada<on and 
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unpredictable rainfall synergis<cally constrain food produc<on and the viability of smallholder 
agriculture in SSA, where 90% of main crop produc<on is under rain-fed condi<ons. The wide 
variability of soil and rainfall precludes the widespread use of crop models for decision making and 
innova<on (Challinor et al. 2018). 

2.2 Data limita/on: Data limita<ons for crop modeling in Africa stem from a combina<on of 
infrastructural, economic, and environmental challenges. Many African regions lack robust data 
collec<on systems, with limited weather sta<ons, soil sensors, and satellite coverage providing 
inconsistent or incomplete data on climate, soil proper<es, and crop performance (Silva and Giller 
2021). Financial constraints and underfunded agricultural research ins<tu<ons hinder the 
development and maintenance of comprehensive databases. Addi<onally, the diversity of 
smallholder farming systems, coupled with varied agroecological zones, makes standardized data 
collec<on difficult. Poli<cal instability and poor coordina<on among governments, NGOs, and 
research bodies further exacerbate gaps in data sharing and accessibility, limi<ng the accuracy and 
applicability of crop models for improving agricultural outcomes. 

2.3 Model coupling: Corbeels et al. (2018) assessed the reliability of coupling climate model 
projec<ons with process-based crop growth models to assess climate change impacts on crop yields 
and inform specific management-level adapta<on strategies. They reported significant uncertain<es 
in such approaches, par<cularly from global circula<on models (GCMs), which are combined with 
uncertain future management regimes and argued for a more cau<ous applica<on. Selec<on of the 
correct crop model and GCM combina<on is cri<cal to obtain realis<c and reliable results. The use 
of GCMs in Africa is unreliable due to the coarse spa<al resolu<on and limi<ng their use in coupling 
with crop models for climate change predic<on (Tanimu et al. 2024) 

2.4 Science of transla/on: A persistent challenge is bridging the gap between model outputs and 
prac<cal decision-support tools. Par<cipatory modelling, where farmers and other stakeholders are 
directly involved in the calibra<on and valida<on process, is essen<al for building trust, improving 
adop<on, and ensuring that models generate ac<onable insights  

3. Conclusions 

Crop models offer powerful tools for simula<ng the complex interac<ons between crops, 
environments, and management prac<ces. They can guide resource op<miza<on, risk mi<ga<on, 
and the design of sustainable farming systems. However, in SSA, their poten<al remains 
underu<lized due to ecological heterogeneity, data scarcity, and the uncertain<es inherent in 
climate–crop coupling. Moving forward, investments are urgently needed in (i) developing models 
tailored to SSA condi<ons, (ii) improving GCM resolu<on and downscaling, (iii) strengthening soil 
and crop data collec<on systems, and (iv) embedding par<cipatory approaches to ensure outputs 
translate into locally relevant, ac<onable decisions. 
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Introduc7on 

Blanket fer7lizer guidelines ojen misallocate inputs across heterogeneous soils and climates, depressing profitability 
(Murphy et al., 2024). We aimed to develop and rigorously vet a support-aware, site-specific N–P₂O₅–K₂O 
recommenda7on policy learned en7rely from historical data, targe7ng higher expected profit while remaining within 
empirically supported prac7ce.  

Materials and Methods 

We used a mul7-year agronomic dataset from on-farm maize trials in Chiapas (2012–2018; 4,585 field-seasons) with 
yield, management (N, P₂O₅, K₂O), soil, topography, and weather features (Trevisan et al., 2022). Yields span 0.1–10.0 
Mg ha⁻¹, reflec7ng high variability typical of smallholder systems.  

We trained a stacked surrogate reward model (XGBoost, LightGBM, CatBoost; Ridge meta-learner) using grouped cross 
valida7on (CV) by geo-clusters and train-only adap7ve ac7on binning to mirror off-policy support.  

Policy learning followed a contextual-bandit framing with conserva7ve constraints (ensuring support coverage and 
u7lizing baseline-mixing) to avoid extrapola7on beyond observed fer7lizer regimes.  

Evalua7on used a conserva7ve off-policy protocol based on self-normalized doubly robust (SNDR) es7mators with 
cluster-bootstrap confidence intervals and mul7ple validity gates (mass-in-support ≥0.95, overlap ≥ 95% with π₀(a) ≥ 
0.1, acceptable weight distribu7on/ESS, and uplij lower confidence bound (LCB) > 0), rejec7ng any year that failed a 
gate.  

Results and Discussion 

The surrogate achieved out-of-fold R² ≈ 0.59–0.62 with RMSE ≈ 1.20–1.26 t ha⁻¹ in most recent years (2016–2018), 
indica7ng strong predic7ve skill for noisy agronomic outcomes; 2015 was an expected outlier (R² < 0).  

The joint propensity model over 36 N–P₂O₅–K₂O cells was well-calibrated (Test ECE = 0.020) with broad ac7on-space 
coverage (34/36 cells observed; 28 cells ≥10 samples), suppor7ng reliable weigh7ng.  

Applying the conserva7ve OPE gates, five of six evalua7on years (2013, 2014, 2016, 2017, 2018) showed sta7s7cally 
significant profit gains over baseline; 2015 failed due to a nega7ve uplij LCB and was rejected. Averaging across 
accepted years, we achieve a mean profit uplij of ~+5.9%. 

To translate these findings into prac7ce, we built a bilingual web app that opera7onalizes this winning policy: users 
enter field condi7ons, and the app recommends op7mal N–P₂O₅–K₂O rates, with appropriate guardrails. This 
implementa7on demonstrates how conserva7ve, offline-validated policies can be delivered in an interpretable tool for 
smallholders and extension partners, directly linking our causal ML results to ac7onable advice. 
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Figure 1. Screenshot of example recommenda3on in app 

 

Conclusions 

Our offline contextual-bandit policy trained on CIMMYT’s Chiapas dataset using conserva7ve causal machine learning 
(ML) methods yields consistent, sta7s7cally-validated profit improvements in historical evalua7on while honoring strict 
safety constraints. This offers a prac7cal pathway to deliver site-specific fer7lizer advice to smallholders – improving 
profitability without recommending untested doses – ready for cau7ous pilot deployment.  
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Introduc7on  

The iden7fica7on of high yielding cul7vars performing consistently under heterogeneous soil and climate contexts 
cons7tutes a major challenge for the resilience of agricultural systems. Understanding the substan7al intra and inter-
annual yield varia7ons largely observed across cereal and oilseed crops requires to decipher the environmental factors 
driving yields and Genotype x Environment Interac7ons (GEI) for yield (Fekadu et al., 2023; Han et al., 2023). Cropping 
models combined with emerging approaches characterizing environmental factors and their contribu7on to GEI can 
enhance our understanding of the main drivers of GEI within each agricultural territory. Such approaches would enhance 
varietal recommenda7ons while contribu7ng to a bexer understanding of cul7var adapta7ons. 

Materials and Methods  
To unravel the main factors driving yield as well as GEI and highlight high performing stable genotypes we adapted an 
approach combining high resolu7on clima7c and pedological data and crop modelling (Bicard et al., 2025; Corlouer et 
al., 2024; Le Roux et al., 2024). Simulated and observed phenological stages were employed to calculate a wide range of 
environmental covariates among which cri7cal drivers were selected. To understand diverging and converging paxerns 
of adapta7on to increasingly unstable clima7c condi7ons among major crops and support consistent yields at regional 
level three majors crops with contrasted crop cycles were examined: winter wheat, spring barley and winter rapeseed. 
Par7al least square regression was employed for unbiased selec7on among ojen correlated  environmental covariates 
based on a regional varietal trial dataset with 13 to 31 environments and 7 genotypes per species. Paxerns among cri7cal 
environmental covariates driving GEI and their occurrence were further characterized at regional level (Bicard et al., 
2025). Finally, genotype yield performance and sta7c and dynamic stability were analyzed via several approaches such 
as the addi7ve main effects and mul7plica7ve interac7on model and the genotype plus genotype-by-environment biplot 
along with performance and stability indices, notably based on environmental clustering.  

Results and Discussion  
Important GEI were observed within the regional trial network, with interac7ons between proposed environmental 
clusters and genotypes having similar or superior effects on yield compared to genotypic main effects. Higher GEI were 
observed for wheat and rapeseed than for spring barley for which the gene7c pool is more limited. Contrasted cri7cal 
environmental covariates were selected for the three main crops with varied cropping cycles examined, with several 
pedological factors retained as key drivers of GEI. Environmental clustering underlined high variability of environments 
within the Northeastern region of France analyzed with cluster occurrences over 10 years ojen close to 30%. We 
observed varia7ons in how genotypes adapt to changing condi7ons with different profiles with regards to yield 
performance and consistency. For high performing genotypes, our results reinforce tradeoffs between yield performance 
and stability. Nonetheless, op7mal genotypes with good yield performance and high stability indices were highlighted.  
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Figure 1: Workflow and outputs of the approach developed 

Conclusions  
The approach developed allowed to improve knowledge of cri7cal environmental factors driving yield performance and 
GEI for yield of three important crops at regional level. Even at the regional level and with the limited number of repeated 
genotypes in the agricultural coopera7ve trial network analyzed our results underlined large influence of GEI 
emphasizing the challenges in iden7fying and deploying high yielding cul7vars performing consistently. Cri7cal 
environmental covariates es7ma7on via crop modelling and high resolu7on pedoclima7c data could support further 
explora7ons of future climate scenarios under climate change and their consequences for genotype performance and 
stability. The genotypes with high yield stability and medium to high performance highlighted could contribute to 
stabilizing produc7on in already variable and increasingly heterogenous condi7ons. The approach developed could 
contribute to varietal recommenda7ons for farmers while deepening our understanding of gene7c resources to bexer 
guide breeding strategies. 
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Introduc7on 

Climate variability and unpredictable extreme weather events have led to disrup7ons in food produc7on and increases 
in market prices. The food crises of the 2000s and 2010s, triggered by extreme weather events, underscore the need for 
swij, 7mely, and accurate decisions in agricultural produc7on. Therefore, 7mely and accurate yield and produc7on 
forecas7ng is becoming increasingly vital for informed crop management and financial decision-making. 

When producers have earlier access to seasonal climate forecasts during the growing season, they can implement more 
effec7ve management prac7ces to op7mize their yields. By u7lizing accurate seasonal climate forecasts, in-season yield 
forecas7ng enables decision-makers to plan early and es7mate produc7on levels and related market prices. The goal of 
this study was to evaluate the capabili7es of the CRAFT spa7al in-season yield forecas7ng system for effec7ve risk 
management in response to climate uncertain7es. 

Materials and Methods 

Gridded simula7ons using the Decision Support System for Agrotechnology Transfer (DSSAT) and the CCAFS Regional 
Agricultural Forecas7ng Toolbox (CRAFT) were used as a method. The DSSAT is a sojware applica7on that comprises 
crop simula7on models for over 42 crops, as well as tools to facilitate the effec7ve use of these models (Hoogenboom 
et al., 2024). To obtain regional and na7onwide spa7al results, the CRAFT was developed and integrated with DSSAT, 
which allows field-level simula7ons. CRAFT is a mul7-scale and mul7-model gridded framework for forecas7ng crop 
produc7on, risk analysis, and climate change impact studies (Shelia et al., 2019; Tesfaye et al., 2023). CRAFT enables spa7al 
yield predic7ons to be obtained at a five-arcmin resolu7on using local weather, soil, and crop management data. Wheat, 
which is widely cul7vated across Türkiye, was selected for the study. Areal crop produc7on and crop mask data were 
obtained from IFPRI’s Spa7al Alloca7on Model (SPAM) for 2020 Version 2.0 (IFPRI, 2024). Daily historical weather data 
were obtained via the NASA POWER web portal in CRAFT version 4.0. The SOILGRID and WISE soil profile databases 
provided by DSSAT were used for the Türkiye domain. 

Results and Discussion 

In this study, the CRAFT model was ini7ally calibrated using wheat yield data from the period 2011 to 2023. In the second 
stage, SST parameter data sets were u7lized for forecas7ng in-season spa7al yields for 2024. The Climate Predictability 
Tool (CPT) (Simon et al., 2025) within the CRAFT model was used to download Sea Surface Temperature (SST) data sets 
for the region surrounding Türkiye, covering the months of March, April, and May—just prior to the wheat harvest 
season in the country. Using SST data as a predictor with the CRAFT tool resulted in a 2024 spa7al wheat yield es7mate 
with approximately 90% consistency. 



 
 

 

 
Figure 1. Spatial wheat yield forecast with 3 months prior to harvest time for Türkiye in 2024 

Conclusions 

The study showed that the CRAFT tool effec7vely es7mate in-season wheat yields across the Türkiye domain area. To 
improve the accuracy of in-season yield predic7ons, it is advisable to analyze SST data from various regions that could 
influence the study area, in addi7on to examining the specific SST dataset used in the research. Furthermore, 
incorpora7ng parameters such as precipita7on is also recommended. The CRAFT tool can serve as a valuable resource 
for decision-makers in genera7ng yield es7mates prior to final harvest for the current growing season. 
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Abstract 

Australia’s sorghum growers face moun7ng pressures from climate variability, shijing markets, and produc7on risks, 
underscoring the need for tools that can reduce uncertainty in pre-sowing decisions. Cul7var and management choices 
are especially challenging when future climate condi7ons and ini7al soil water status are unknown. 

We present a prototype decision support framework that integrates seasonal forecasts from ECMWF global circula7on 
models, Sen7nel-1 and Sen7nel-2 earth observa7on datasets, and the APSIM crop model into a user-driven pla�orm. 
Machine learning methods convert remote sensing data into es7mates of star7ng soil water, reducing reliance on 
sparse climate sta7on networks. These inputs drive APSIM simula7ons that explicitly evaluate the interac7ons 
between genotype (cul7var choice), environment (forecast climate and soil moisture), and management (sowing date, 
fer7lisa7on, row configura7on). This G×E×M framing enables users to benchmark alterna7ve strategies under realis7c 
site and season specific condi7ons, transla7ng model complexity into prac7cal decision points. 

A key innova7on is the pla�orm’s spa7al capability: satellite imagery allows field-scale variability to be incorporated 
into crop simula7ons, enabling detec7on of zones with higher or lower produc7on poten7al. This supports precision 
agriculture by guiding input targe7ng, while also iden7fying high-risk scenarios—where crop failure is likely—as well as 
situa7ons where yield poten7al is under-realised. Together, these insights allow growers to ac7vely manage both 
climate risks and opportunity gaps. 

S7ll at prototype stage, the system is undergoing advisor feedback, informing an interface that balances usability with 
modelling sophis7ca7on. Early applica7ons suggest the framework narrows decision spaces, sharpens risk awareness, 
and enhances climate resilience in sorghum systems. This work demonstrates how integra7ng forecasts, earth 
observa7ons, and APSIM through a G×E×M lens can generate ac7onable tools for decision-focused crop modelling. 
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Introduc7on 

The combina7on of climate change and stricter environmental regula7ons will lead to the increased exposure of potato 
(Solanum tuberosum spp.) crops to drought and nitrogen stress in the Netherlands. Gaining a bexer understanding of 
the response of potato to the combina7on of both stressors, and the resul7ng effect on tuber yield, will facilitate 
adapta7on via improved plant breeding and crop management. Crop growth models are an important tool for 
understanding the interac7on between genotype, environment, and management (Tardieu et al., 2018). However, 
insights remain limited due to the need for genotype-specific parameterisa7on (ten Den et al., 2022). Combining model 
calibra7on (MC) with high-throughput phenotyping shows promise for genera7ng the required parameter sets (Huang 
et al., 2023). In par7cular, the development of low-cost UAV-based sensors (RS) offers the poten7al for high-frequency 
and high-resolu7on 7me-series data for small-plot trials. Yet, the performance and data requirements of calibra7on 
methods remain unclear. We aim to iden7fy suitable calibra7on methods, input traits, and number and 7ming of 
observa7ons for genera7ng genotype-specific model parameter sets. 

Materials and Methods 

In the context of the CropXR programme1, large-scale field experiments were conducted in two loca7ons in the 
Netherlands in 2024 and 2025. The treatment factors included irriga7on, nitrogen (N), and genotype. True colour, 
mul7spectral, and thermal-infrared images were collected weekly from emergence un7l haulm-killing and processed 
into “off-the-shelf” traits (e.g., RS-LAI) by a commercial company. There were four (2024) and five (2025) harvests to 
measure biomass, leaf area, and 7ssue N-content. WOFOST 8.1 will be used for a model-based analysis of stress-
tolerance traits following calibra7on. 

Research Approach 

A review of WOFOST state variables and available literature iden7fied leaf area index (LAI), nitrogen nutri7on index 
(NNI), crop water stress index (CWSI), and final tuber dry maxer yield as poten7al observa7ons to use for MC. However, 
exploratory analysis shows only medium predic7ve ability of RS-LAI, and no “off-the-shelf” products are available for 
NNI and CWSI. Preliminary results (figure 1) show that combining RS-traits can improve LAI predic7on. 

 

Once LAI, NNI, and CWSI predic7on methods are established, a sensi7vity analysis will be used to determine WOFOST-
parameters to be calibrated under op7mal, drought-, and nitrogen-stressed condi7ons. The ‘24/’25 data will be used to 
develop the main calibra7on pipeline and determine Bayesian calibra7on’s data requirements in terms of observa7on 
type (LAI, NNI, CWSI, yield), and number and 7ming of observa7ons. Addi7onally, we will explore if the inclusion of 
hierarchical rela7onship (e.g., loca7on, year, and genotype) improves parameter uncertainty and yield predic7on. Ajer 

 
1 www.cropxr.org 



 
 

 

applying the developed pipeline to the 200 genotypes of the ‘26/’27 experiments, the calibrated model will be used to 
iden7fy drought- and nitrogen-stress tolerance strategies and their trade-offs under op7mal condi7ons. 

 

 

Figure 1. Fitted versus measured leaf area index for a preliminary model using Simple Ratio and Maximum Canopy Height to predict LAI. Different 
harvest moments are highlighted (red, green, blue, and purple, respectively, for harvests one to four) and the red line indicates the line of equality 

(y = x). 
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Introduction 
OliveCan (López-Bernal et al., 2018) is a process-based model that simulates olive oil production under varying climatic 
and water conditions. It has been applied to assess the impacts of climate change on olive production across Europe 
(Mairech et al., 2021) and to evaluate cover crop effects on orchard water balance and yield (López-Bernal et al., 2022). 
OliveCan belongs to the family of mechanistic crop models, i.e. those with a strong biophysical basis (García-Tejera et 
al., 2024). Such models improve our understanding of crop–environment interactions and physiology but require 
extensive parameterization and are computationally demanding (Boote et al., 1996; Passioura, 1996). In its current 
form, OliveCan is therefore unsuitable for large-scale, real-time applications. To overcome this, we developed OliveCan-
Lite, a streamlined version that reduces simulation time while retaining its biophysical foundation. 

Two main simplifications were introduced in OliveCan. First, the canopy is assumed to be perfectly coupled to the 
atmosphere (Villalobos et al., 2000), i.e. leaf temperature follows air temperature and transpiration depends mainly on 
stomatal conductance. Second, water stress effects are modelled applying Ritchie (1985) conceptual model, instead of 
solving equilibrium between leaf water potential and stomatal conductance (García-Tejera et al., 2017). These changes 
allow analytical solutions for transpiration, reducing computation time. The objective was to evaluate OliveCan-Lite 
adaptations against experimental yield data. 

Materials and Methods 

Model performance was tested with data from an orchard experiment in Córdoba, Spain (Iniesta et al., 2009), also used 
in previous OliveCan assessments (López-Bernal et al., 2018). The trial was conducted from 2004 to 2006 at the Alameda 
del Obispo Research Station (37.8°N, 4.8°W, 110 m a.s.l.) with ‘Arbequina’ trees spaced 7 × 3.5 m. The soil was a 2 m 
sandy loam, with water contents at field capacity and wilting point of 0.23 and 0.07 m³ m⁻³, respectively (Testi et al., 
2004). Weather data were collected from a station 500 m from the orchard. Three irrigation regimes were tested, but 
only two were simulated: (i) control (C), fully replacing ET demand, and (ii) continuous deficit irrigation (CDI), supplying 
25% of C. Regulated deficit irrigation could not be simulated, as OliveCan-Lite does not yet allow irrigation scheduling 
by date. 

Results and Discussion 

Simulation time was reduced from 1 minute with OliveCan to 5 seconds with OliveCan-Lite. This efficiency gain did not 
compromise accuracy, as preliminary results show good agreement between observed and simulated yields under both 
irrigation regimes (Figure 1). However, significant discrepancies occurred in 2005, an “off” year with low crop load. This 
suggests that alternate bearing, a key feature of olive production, is still insufficiently represented and requires further 
model refinement. 

 



 
 

 

 

Figure 1. Oil yield comparison between simulated and experimetal data for the Control and the Continuous Deficit Irrigation treatments 

Conclusions 

OliveCan-Lite represents a first step toward an efficient, large-scale olive oil yield forecas7ng tool. It maintains the 
biophysical founda7on of OliveCan while achieving a 12-fold reduc7on in run7me. Further improvements are needed, 
par7cularly in simula7ng alternate bearing, to enhance its predic7ve capacity across diverse European regions. 
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Introduc7on 

Cri7cal nitrogen dilu7on curves (CNDCs) are widely used to diagnose the nitrogen nutri7onal status of crops by 
es7ma7ng the Nitrogen Nutri7on Index (NNI) (Justes et al., 1994; Lemaire et al., 2019), which informs fer7liza7on 
decisions. CNDCs, by design, imply maximum biomass accumula7on when NNI = 1, and in most cases, also maximum 
grain yield. Several studies confirm that maintaining an NNI close to 1 during stem elonga7on maximizes grain yield 
(Hoogmoed et al., 2018; Lemaire et al., 2008), while lower values are favorable before stem elonga7on (Ravier et al., 
2017). In-season decision support systems (DSSs) for diagnosing nitrogen needs enable bexer synchroniza7on of 
nitrogen demand and supply, reducing losses and maximizing profit. In situ sampling combined with remote sensing and 
simple models can be scaled to large areas using management prac7ce informa7on readily available from farmers and 
limited field data, as these are key factors in facilita7ng farmer adop7on. This study explores a novel applica7on of the 
CNDC by proposing the use of the analogous cri7cal nitrogen absorp7on curve (Lemaire et al., 2008) to forecast future 
nitrogen demand, thus enabling in-season es7ma7on of crop nitrogen requirements through an in-season nitrogen mass 
balance and the es7ma7on of future biomass accumula7on. Rather than diagnosing the current nitrogen nutri7onal 
status, this prognos7c approach predicts future nitrogen needs based on the crop’s expected capacity for biomass 
accumula7on, which can be es7mated with greater accuracy than nitrogen needs directly. 

Materials and Methods 

The Op7fert-N DSS is based on an in-season nitrogen mass balance that incorporates several components to es7mate a 
recommended nitrogen rate (Nrec, kg ha⁻¹) to be applied: residual soil nitrogen from previous fer7liza7on (Nres, kg ha⁻¹), 
projected future nitrogen demand (Ndem, kg ha⁻¹), observed accumulated biomass and nitrogen in the crop (Wobs, Mg 
ha⁻¹; Uobs, kg ha⁻¹), and es7mated nitrogen mineraliza7on (Nmin, kg ha⁻¹, defined as the nitrogen captured by a zero-N 
plot, which should be site-specific) (Figure 1). The func7on GRf(NNIobs) is an empirical rela7onship derived from observed 
data, rela7ng the daily growth rate to the NNI in a quadra7c-plateau form; however, it can be replaced by any func7on 
capable of predic7ng future crop growth (e.g., derived from remote sensing). NNIobj represents the target NNI, typically 
set to 1 at anthesis. This procedure can be applied between the join7ng and boo7ng stages of wheat development to 
determine an in-season top-dress fer7liza7on rate. 
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Figure 1. Conceptual diagram and equations of the DSS. With Efr=0.6, Efv=0.5, a=53.5, b=0.442. Nsoil Z0, Nfert Z0 , N fert Z22 and Nfert Z30  are the initial soil 
nitrogen content at planting (0-60cm depth in kg ha-1), and rates of fertilizer aplcation at planting, Zadoks 22 and 30 respectivelly if aplied. 

Results and Discussion 

 

To validate the model, a set of nitrogen response experiments (n = 20) conducted between 2018 and 2020 at INIA La 
Estanzuela was used. The model was used to determine the recommended nitrogen rate (Nrec, kg ha⁻¹) at Zadoks 30 
(join7ng) through destruc7ve biomass sampling. Es7mated biomass at the end of vegeta7ve growth (Zadoks 65) (Figure 
2, lej) ranged from 4 to 16 Mg ha⁻¹, with a root mean square error (RMSE) of 2.3 Mg ha⁻¹. Plots receiving lower nitrogen 
rates exhibited lower biomass accumula7on (blue) compared to those receiving higher rates (green). To evaluate overall 
performance and account for residual nitrogen from previous applica7ons, the total nitrogen applied (Nrec + previous 
applica7ons) for each treatment was compared to the site-specific economic op7mum nitrogen rate (EONR). The DSS 
performed well in two out of three years, with an RMSE of 51 kg ha⁻¹ and a tendency to underes7mate (false lows) rather 
than overes7mate (false highs) nitrogen rate recommenda7ons, likely due to overes7ma7on of nitrogen use efficiencies 
(Efr, Efv) in years with extreme clima7c events. 

  
Figure 2. Observed vs estimated biomass (W+ΔW) as estimated by the biomass prediction model (color scale green-yellow-blue form higher to 
lower N rates respectively) . Biomas estimation (left) and validation of DSS as compared to economic optimum nitrogen rate (EONR) at sites with 
nitrogen response experiments in three years (right). 

Conclusions 

Using the cri7cal nitrogen uptake curve to es7mate nitrogen demand proved a promising strategy for determining in-
season nitrogen applica7ons, enabling the development of simple models that can be integrated into more complex 
DSSs. The approach achieved a reasonable RMSE and was effec7ve in: 1) avoiding falsely high applica7on rates, 2) 
reducing nitrogen rates when crop response is limited due to poor crop status at the 7me of sampling or limited capacity 
for future growth, and 3) recommending high rates when necessary. 
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Introduc7on 

Ensuring food security under climate change and resource constraints requires tools for sustainable intensifica7on of 
cereal produc7on. The global popula7on, projected to reach 9.7 billion by 2050, will raise food demand by almost 60% 
(FAO, 2022). Conven7onal systems based on intensive inputs and uniform prac7ces are insufficient to meet these 
challenges while preserving sustainability (Casa & Pisante, 2024). Precision agriculture, integra7ng remote sensing and 
crop models, offers a pathway to enhance input efficiency and reduce environmental impacts (Cammarano et al., 2023). 

Process-based models such as the Decision Support System for Agrotechnology Transfer (DSSAT) simulate crop–
environment–management interac7ons and support decision-making from field to regional scale (Jones et al., 2003; 
Hoogenboom et al., 2019). Their reliability depends on calibra7on and assimila7on: calibra7on aligns parameters to local 
cul7vars and condi7ons, while assimila7on corrects model states with external observa7ons, enabling dynamic and 
spa7ally explicit yield predic7on. Challenges remain, including data needs and calibra7on complexity, although advances 
are improving accessibility and robustness (Holzworth et al., 2014; Cammarano et al., 2023). 

This study focused on winter wheat (TriBcum aesBvum L.), the world’s most important cereal and a staple in 
Mediterranean cropping systems, where rising temperatures already threaten produc7on (Asseng et al., 2015). The 
objec7ve was to evaluate DSSAT performance in the Rie7 plain (Central Italy), analyzing the effect of  calibra7on and 
assimila7on of biophysical variables measurable via remote sensing. 

Materials and Methods 

Field trials were carried out in three farms of the Rie7 plain (Italy) in 2023–2024, with ten 30×30 m plots across 
contras7ng soils. Phenology was recorded (BBCH), LAI measured with LI-3100C, biomass sampled by quadrats, dried and 
weighed, while canopy N was determined by a portable near-infrared (NIR) spectrometer and grain yield from 
harves7ng. DSSAT v.4.8.2 was parameterized with local sta7on weather data and regional soil maps supported by field 
sampling. Calibra7on of cul7var and ecotype parameters was performed with Crop7mizR using a Nelder–Mead simplex 
algorithm, tes7ng assimila7on of LAI, biomass, N, and their combina7ons. 

Results and Discussion 

Uncalibrated DSSAT failed to reproduce growth dynamics, underes7ma7ng LAI and misrepresen7ng biomass, resul7ng 
in poor yield predic7ons (R² = 0.04). Assimila7on under default se�ngs improved correla7ons (R² = 0.71) but increased 
RMSE. Manual calibra7on of cul7var and ecotype parameters improved model fidelity, especially for phenology and LAI. 
When assimila7on was applied post-calibra7on, accuracy improved: assimila7ng biomass reduced RMSE to 1.8–2.0 t 
ha⁻¹ and raised R² above 0.5. Assimila7on of LAI or nitrogen alone had limited benefits. 

 

 

 



 
 

 

Table 1. Observed yield versus simulated yields with and without assimilation. 

Plots 1 2 3 4 5 6 7 8 9 10 

HND 2.137 1.817 1.715 2.013 1.651 2.275 2.362 1.439 1.597 1.294 

HN%D_def 1.633 1.149 1.373 1.305 1.289 1.237 1.197 1.275 1.312 1.112 

HN%D_ass 3 1.813 2.489 1.442 2.241 1.445 1.386 1.842 1.872 1.426 

 

   
Figure 1. Comparison of yield (HWAD) before and after assimilation of LAI (LAID), aboveground biomass (CWAD), and canopy nitrogen (CNAD): on 

the left a before assimilation, on the right   after assimilation. 

Conclusions 

Combining calibra7on and data assimila7on maximized the predic7ve power of DSSAT. Biomass proved to be the most 
informa7ve assimilated variable. The study shows that calibrated DSSAT supported by assimila7on of remote-sensing 
indicators can generate reliable yield maps and provide decision-support tools for fer7liza7on, irriga7on, and harvest 
planning in Mediterranean wheat systems. The workflow is transferable to other contexts, contribu7ng to resilience and 
sustainability in global grain produc7on. 
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Introduc7on 

Olive and olive oil produc7on is a pillar of rural economies in the Mediterranean. The EU produces over 50% of global 
olives and two-thirds of olive oil, mainly in Spain, Italy, Greece, and Portugal. Yet, inter-annual variability is high, driving 
price vola7lity and uncertainty for stakeholders. Timely, accessible forecasts are essen7al to enhance market 
transparency, avoid specula7on and support decision-making. Within this context, the European Commission, through 
the Joint Research Centre (JRC), has proposed including olive in the MARS Crop Yield Forecas7ng System (MCYFS). To 
an7cipate produc7on outcomes, several approaches have been tested: in situ surveys, empirical models including 
machine learning (Ramos et al., 2025), process-based models (López-Bernal et al., 2018), and aerobiological modelling 
(Oteros et al., 2014). Each offers advantages and limita7ons, underscoring the poten7al of hybrid approaches. 

The proposed idealised Olive Yield Forecas7ng System (Figure 1) follows this path. The present work focuses on the 
crea7on of region-specific and gridded datasets to characterise olive produc7on and produc7on systems in the EU's 
main olive-producing countries. The resul7ng database is used to parameterise and test an adapted version of the 
OliveCan model (OliveCan-Lite), which was specifically developed for being integrated into the MCYFS (Garcia-Tejera et 
al., 2026). 

 

Figure 1. Olive Yield Forecasting System 



 
 

 

Materials and methods 

To characterize olive produc7on systems in Spain, Portugal, Italy, and Greece, informa7on was collected from mul7ple 
sources. Official sta7s7cs and reports from na7onal ministries, regional administra7ons, and producer organiza7ons 
were combined with evidence from specialized literature and technical documenta7on. Data collec7on was carried out 
at both NUTS3 and grid cell (10 × 10 km) levels, enabling the compila7on of historical series together with spa7ally 
explicit informa7on. To capture the spa7al dimension, parcel-level databases of olive orchards were combined with 
remote sensing indices such as NDVI and SAVI. 

Results and discussion 

The characteriza7on generated harmonised datasets at both geographic levels. At NUTS3 level, informa7on includes 
historical series of area, produc7on, and yields, along with descriptors of orchard typologies, tree density, soil and terrain 
axributes, irriga7on prac7ces, flowering and harvest dates, predominant cul7vars, and main pests and diseases. Grid 
cell level data provide informa7on on the area of olive cul7va7on and tree canopy cover. These datasets support the 
parameterisa7on of OliveCan-Lite and enable cross-country comparisons. Important challenges encountered include the 
fragmenta7on of data across administra7ons (i.e., informa7on dispersed across different levels of regional authori7es), 
the lack of up-to-date informa7on on irrigated areas, and gaps in key variables in some regions (e.g., dates of cri7cal 
phenological stages and tree density), which had to be es7mated through alterna7ve procedures. 

Conclusion 

The crea7on of this harmonised database provides the founda7on for the first regional-scale sta7s7cal models to 
forecast olive yield and produc7on in the EU's main olive producing countries. We believe that the database will also 
find applica7ons beyond this goal. Ajer further tes7ng and improvement, it will be made publicly available. 
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Introduc7on:  

Climate change is increasing the incidence of warmer and wexer condi7ons in Ireland (Nolan & Flanagan, 2020), 
leading to an increase in fungal diseases, such as Crown Rust (Puccinia Coronata). Disease development is also more 
likely as regula7ons reduce the nitrogen inputs allowed on grassland farms. The increased stress placed on growing 
plants during 7mes of soil moisture deficits and low nitrogen can promote fungal spread (Critchex, 1991). Diseases like 
Crown Rust nega7vely impact herbage yield and quality, significantly affec7ng pasture produc7vity and nutri7ve 
quality for grazing caxle (Carr, 1975). Diseases can be visually assessed as the reduc7on of green in the sward 
(Kimbeng, 1999). However, disease monitoring can be laborious, and disease may only be no7ced when large areas of 
the sward are already infected. The use of technology driven disease detec7on could reduce associated labour inputs 
and decline in sward quality and yield. The difference in greenness can be u7lised to inform a decision support tool 
(DST) that can monitor for disease incidence. The objec7ve of this study was to detect disease incidence in PRG swards 
using drone imagery, using greenness as a proxy. 

Materials and Methods:  

The study was carried out on 200 plots containing various perennial ryegrass (PRG, Lolium perenne) cul7vars in 
October 2024. Herbage samples were collected from each plot by cu�ng a 0.25m2 area within a quadrat using 
Gardenia hand shears to 4cm. 100g of each sample was oven dried at 90°C for further analysis. Herbage samples were 
analysed using near infrared spectroscopy for es7ma7on of dry maxer diges7bility (DMD), and other quality metrics. 
Disease scoring was assessed visually on each plot by three independent scorers, by calcula7ng the % of the plot 
infected × % leaf area affected. Drone imagery was captured using a DJI Mavic Series 3 drone. Greenness was 
quan7fied by calcula7ng the number of green pixels out of the total area analysed. Sta7s7cal analysis was carried out 
using RStudio and R version 4.4.1. 

Results and Discussion:  

Regression analysis showed that greenness had a significant nega7ve associa7on with disease score (p < 0.001) (Figure 
1). Disease score explained ~65% of the varia7on observed for greenness (R2=0.647). This impact of disease aligns with 
the expected reduc7on of green leaf area and increased dead 7ssue (Poxer, 1987). A rela7onship was also observed 
between disease score, greenness and quality traits. DMD was nega7vely associated with disease score, (R² = 0.52, p < 
0.001), and DMD was posi7vely associated with greenness (R² = 0.66, p < 0.001). As disease incidence increased, DMD 
decreased along with the level of greenness, sugges7ng that plant greenness can be used to detect disease. This 
reduc7on in herbage quality with the incidence of disease can limit animal performance, par7cularly during autumn 
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when grass growth is slowing (O’Donovan et al, 2016). The poten7al of drone derived imagery for the early detec7on 
of disease in PRG could mi7gate the nega7ve impacts of disease in pasture-based systems. 

 

 

Figure 2: Relationship between greenness and Disease Score. A significant negative linear relationship was observed (R² = 0.65, p < 0.001), with 95% 
confidence intervals shown. 

Conclusion: 

The use of greenness derived from imagery has the poten7al to predict the presence of disease of PRG. As climate 
induced temperatures increase along with reduced N inputs, monitoring swards for the presence of disease will 
become more important. Iden7fying disease using drone imagery will be useful on grassland farms as a DST to reduce 
the nega7ve impacts of disease including reduc7on in herbage yield and quality. 
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Sugar beet (Beta vulgaris L.) is one of the most important sugar-producing crops. With more than 4 bha, it contributes 
approximately 20% of the world’s sugar supply. The more, its cul7va7on is gaining interest in several countries, due the 
high revenue, and an high sugar purity. Nonetheless sugar beet is in many countries an irrigated crop and the water 
management may be a cri7cal factor because of the high suscep7bility to a range of foliar and root diseases that may 
significantly compromise both yield and sugar content, most of them being strongly dependent on the level of humidity 
– it means that watering could be a dangerous prac7ce. 
In irriga7on the use of models as Decision Support Systems to es7mate water balance is a common prac7ce for decades, 
but the huge number of parameters make their es7mate of water availability not reliable on a large scale - soil maps and 
weather forecast cannot give informa7on with the due precision. Crop models have been recently embedded in Digital 
Twins (DTs) where a data assimila7on process allowing to progressively adjust parameters, ini7al condi7ons and forcing. 
In this case the model AquacropOS (ver.6) has been rearranged in a Digital Twin architecture, able to work on na7on-
wide soil maps and weather data, and using . NDVI and NDMI (from Sen7nel-2) as proxy variables for cover crop and 
stress coefficient respec7vely. New modules have been added to model root and sucrose dynamics. 
Two sugar been grown fields have been considered for 2023 and 2024 in the central high-plane of Spain and irriga7on 
schedules from farmers have been monitored and compared to the ones suggested from the Digital Twin, pu�ng in 
evidence how the system may help to reduce to amount of water, refine the soil hydraulic parameterisa7on and weather 
informa7on. 
In conclusion, DTs, a technology of growing interest in agricultural applica7ons and services, may help to save water, 
reduce the risk of yield loss but it also help in increase the spread of satellite data and the knowledge of soils and weather 
distribu7on. 
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Introduc7on 

Oilseed rape (OSR; Brassica napus) is a globally important oil crop with poten7al to help narrow Egypt’s substan7al 
edible oil gap (Kheir et al., 2021). As Egypt’s agricultural sector is highly dependet on limited water resources, it is crucial 
to iden7fy cropping strategies that allow for water use effiecient OSR produc7on. To support OSR’s introduc7on as a 
novel crop in Egypt, reliable informa7on on expected yields, irriga7on requirements, and suitable sowing windows is 
essen7al. 

Process-based cropping sytems models (CSM) allow to explore the produc7on poten7al of novel crops in specific target 
environements. To provide robust simula7on results a thorough calibra7on and evalua7on of CSM is essen7al, building 
on mul7-environment field trial data (A�a et al, 2024; Shawon et al., 2024). 

Materials and Methods 

For this purpose, we conducted six independent field experiments, one in Germany and five across Egypt’s major agro-
clima7c zones. Building on the detailed trial data on OSR phenology, growth, and yield forma7on we calibrated and 
evaluated the CROPGRO model from DSSAT, previously adapted for OSR. We conducted a genotype-specific calibra7on 
for the Egyp7an OSR cul7var SERW4, which was grown in all six field experiments. 

We subsequently applied the parameterized model to simulate OSR produc7on across the five Egyp7an sites. Using site-
specific soil and weather data, we assessed eight sowing dates between mid-September and beginning of January under 
two irriga7on strategies: (i) fixed schedules reflec7ng experimental prac7ce, and (ii) automa7c irriga7on triggered by 
plant available water thresholds over thirty years (1991–2020). Under automa7c irriga7on the soil profile was refilled 
whenever plant available water in the top 30 cm fell below 50% of plant available water capcity. We inves7gated 
simulated seed yield, applied irriga7on, evapotranspira7on, and both irriga7on water use efficiency and evapora7ve 
water use efficiency (WUE). We finally use mixed linear model analyses to assess differences between sowing dates and 
irriga7on strategies and iden7fy op7mal sowing windows for various produc7on regions.  

Results and Discussion 

Model evalua7on showed strong performance, with a d-index of 0.91–0.95 for phenology, biomass, and yield. Long-
term simula7ons indicated that all tested Egyp7an sites are generally suitable for OSR produc7on, with average yields 
ranging from 1.9 to 3.1 Mg ha⁻¹ when sown at the loca7on-specific op7mum dates. Op7mum sowing windows varied 
geographically, from early October in the hoxer southern sites to mid-November in the cooler northern regions. Notably, 
water use efficiencies differed markedly among sites: southern loca7ons required more irriga7on, resul7ng in lower 
irriga7on WUE, whereas northern sites in the Nile delta showed higher irriga7on WUE due to cooler condi7ons and soils 



 
 

 

with bexer water reten7on. Automa7c irriga7on consistently improved WUE compared to fixed schedules, though its 
feasibility under Egyp7an condi7ons remains constrained by technology and infrastructure requirements. 

Figure 1 Comparison of simulated and observed phenological development, growth, and yield of oilseed rape using the calibrated CROPGRO model. 
Data from Edko, Nubariya, and Toshka were used for model calibration, while independent datasets from Shebin and Sadat were used for model 

validation (see Table 1 for experimental details). Panels show simulated versus measured anthesis (a), maturity (b), and final seed yield (c) for 
calibration (●) and validation (○) datasets against the 1:1 line, as well as biomass accumulation (d–e), leaf area index (f–g), and leaf appearance (h–

i). The results highlight the robustness of the model across diverse agro-climatic conditions in Egypt. 

Conclusions 

Our findings highlight regionally op7mized sowing dates that realize high yields and water use efficiency at the same 
7me as a low-cost, climate-smart strategy suppor7ng water use efficient OSR produc7on in Egypt. The calibrated crop 
model, integra7ng yield poten7als and water use efficiencies, provides a valuable decision-support tool for policymakers 
and farmers aiming to expand sustainable OSR cul7va7on in Egypt and other North African and semi arid regions. 
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Introduc7on  

Alfalfa (Medicago saBva L.) is among the most important forage crops worldwide, being valued for its high protein 
content, diges7bility, and suitability for ruminant nutri7on (Testa et al., 2011). In Mediterranean irrigated systems, alfalfa 
plays a strategic role as a rota7on crop, contribu7ng to soil fer7lity and providing high-quality feed for dairy chains. 
However, its produc7vity is highly dependent on water availability and irriga7on efficiency. Increasing climate variability, 
combined with pressure on water resources, necessitates more sustainable and precise management strategies. The 
integra7on of crop simula7on models with remote sensing observa7ons is an emerging approach to op7mizing 
management decisions (e.g., Deines et al., 2021). Remote sensing, par7cularly through freely available satellite pla�orms 
such as Sen7nel-2, provides 7mely and spa7ally explicit informa7on on crop growth and stress. Crop simula7on models, 
on the other hand, provide insights into poten7al produc7vity under op7mal condi7ons (e.g., Schils et al., 2018). 
Combining these tools enables the iden7fica7on of yield gaps and the factors that explain them, suppor7ng decision-
making in precision agriculture. This study, conducted within the Sardinian PSR 16.1 ZOOTRACK project, aimed at tes7ng 
the integra7on of crop models and satellite-based vegeta7on indices for predic7ng alfalfa yield and quan7fying yield 
gaps in a Mediterranean plain environment. 

Materials and Methods 

The research was conducted in the Arborea district (Sardinia, Italy; 39.77°N, 8.61°E), an area reclaimed from the Sassu 
Lagoon and characterized by intensive dairy farming and forage produc7on. Nineteen alfalfa fields, ranging in size from 
2 to 12 ha, were monitored over a total area of 140 ha. During the 2023–2024 cropping season, data on yields were 
collected at each of the three harvest events typically carried out for dehydrated forage produc7on. Yields were 
measured both as fresh biomass for dehydra7on and as dry maxer (Mg ha⁻¹). 

Mul7spectral data from the Sen7nel-2 satellite were processed to obtain 7me-series of vegeta7on indices, including 
NDVI, EVI, NDRE, and NDWI. To reduce noise, daily-smoothed curves were generated, and phenological parameters such 
as the integral of the index curve and the maximum peak value were derived for each cu�ng cycle. These features were 
then used as predictors in Random Forest models to es7mate field-level yield. Model performance was assessed through 
cross-valida7on, with evalua7on metrics including root mean square devia7on (RMSD) and Willmox (1982) index of 
agreement (d). 

In parallel, poten7al yields were simulated using the Decision Support System for Agrotechnology Transfer (DSSAT v4.8; 
Hoogenboom et al., 2019) crop model under non-limi7ng water and nutrient condi7ons. The minimum dataset used for 
model parametriza7on and calibra7on included daily meteorological data (solar radia7on [MJ m⁻² d⁻¹], maximum and 
minimum temperature [°C], rainfall [mm], wind speed [m s⁻¹], and rela7ve humidity [%]), soil parameters (texture, field 
capacity, wil7ng point, bulk density, ca7on exchange capacity, pH, nitrogen content, and organic maxer), and agronomic 
management informa7on (7ming and applied inputs).The comparison between simulated and observed yields allowed 
for the calcula7on of yield gaps, which were spa7alized across fields. Correla7ons between yield gaps and stress-related 
indices, par7cularly NDWI, were tested to inves7gate the role of water availability. 



 
 

 

Results and Discussion  

The Random Forest approach achieved satisfactory predictive performance, with an RMSD of 0.325 Mg ha⁻¹ of DM and 
a high index of agreement (d = 0.83). Yield maps revealed high spatial variability both within and across fields. The 
average annual yield across the 19 monitored fields was 5.55 Mg ha-1 of DM. However, coefficients of variation were 
consistently high (23% on average per cut), highlighting the heterogeneous response of alfalfa under the same 
management conditions. 
Observed (Figure 1A) yields (5.55 Mg ha-1 of DM) were on average 27% lower (Figure 1B) than simulated potential yields 
(7.59 Mg ha⁻¹ of DM), with differences being highly significant (p < 0.0001). This result indicates a substantial yield gap 
that cannot be attributed to genetic or climatic limitations, but rather to field-level management inefficiencies. Spatial 
analysis further showed that yield gaps were significantly correlated (p < 0.001) with the NDWI water stress index (Figure 
1C). This confirms that, despite being intensive in the Arborea district, irrigation practices are not always effective in 
preventing water stress. 

 
Figure 1. Alfalfa yield (A, Mg/ha of DM), yield gap (B, %), and correlation between the spatialised yield gap (%) and the cumulated Normalised 

Difference Water Index (NDWI). Data on A and B refer to the sum of the mowing events for dehydrated forage production 

Conclusions  

This study confirmed that alfalfa yield in Mediterranean irrigated systems can be effec7vely predicted using remote 
sensing 7me-series combined with machine learning approaches. Yield gaps, quan7fied through the integra7on of 
observed data and crop modeling, were primarily axributed to localized water stress resul7ng from irriga7on 
inefficiencies. The methodological framework tested here offers prac7cal tools for farmers and advisors to improve 
forage management. By genera7ng spa7al yield maps and diagnosing the causes of yield gaps, it is possible to design 
targeted interven7ons, reduce resource waste, and enhance sustainability. These results contribute to advancing 
precision agriculture in forage systems and support the resilience of Mediterranean dairy supply chains facing climate 
and water challenges. 
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Introduc7on 

For several decades in France, nitrogen (N) fer7liza7on reasoning has been based on the principle of the "balance sheet" 
method. This method comes up against strong implementa7on limita7ons (Ravier et al., 2016), and a lack of adaptability 
in the face of clima7c hazards. This observa7on has mo7vated the emergence of a new concept of "integral 
management” of N fer7liza7on, which avoids a priori es7mates of forecast N rate in favor of reasoning based on 
instantaneous plant needs. Since 2017, ARVALIS has been developing an integral management tool of N fer7liza7on in 
wheat, FERTI-ADAPT CHN, which relies on a mechanis7c crop model (CHN) to access plant N nutri7on levels in real 7me 
and forecast canopy N requirements. CHN allows to simulate the development, growth and N nutri7on status of a wheat 
crop on a daily basis in response to its environment using a dynamic approach. The innova7ve near-real-7me coupling 
of CHN with data from on-board satellite sensors provides an accurate diagnosis of wheat's N nutri7on status, improving 
the accuracy of crop N requirement projec7ons. The frac7oning of N inputs does not follow an a priori defined strategy, 
in favor of a mul7-criteria reasoning method that is more integra7ve of annual variability. The aim of this study is to 
evaluate the agronomic performance of FERTI-ADAPT CHN under field condi7ons. 

Materials and Methods 

This study relies on a French network of 67 field trials of winter bread wheat (Tri7cum aes7vum L.) conducted from 2021 
to 2023. Nitrogen management based on the balance sheet method was compared with that based on the FERTI-ADAPT 
CHN tool. Measurements of grain yield and grain protein concentra7on were performed at harvest to compare the two 
prac7ces. The total N rate applied in each treatment was also recorded. These data were used to calculate a nitrogen 
net profit margin, incorpora7ng several scenarios for N fer7lizer prices (from 1.3 to 2.7 € kg N-1) and grain selling prices 
(from 230 to 350 € t-1). A remunera7on scale for grain protein concentra7on was also used for this evalua7on.  

Results and Discussion 

The tool's performance varies depending on environmental characteris7cs. When grain yield is constrained by factors 
other than nitrogen, as observed during the growing season 2022, the tool makes it possible to limit the amount of 
nitrogen applied to the crop without compromising its technical performance. Conversely, when the environment is 
more favorable to produc7on, FERTI-ADAPT CHN improves yield and grain protein concentra7on. For example, in 2023 
(Fig. 1), compared with the balance sheet method, integral management of N fer7liza7on significantly improved grain 
yield by 0.25 t ha-1 (p-value = 0.03) without increasing the nitrogen rate applied (-12.1 kg N ha-1, p-value = 0.12) and 
without penalizing grain protein concentra7on (+0.2 %, p-value = 0.23). Producing more grain with higher protein 
concentra7on using less nitrogen fer7lizer mechanically improves the nitrogen net profit margin. Depending on the 
combina7on of fer7lizer purchase price and grain selling price scenarios, the average gain ranges from 77 to 109 € ha-1. 

 



 
 

 

 

Figure 1. Comparison between agronomic performances obtained by the balance sheet method (reference) and a N management based on CHN-
conduite. Comparisons were performed for grain yield at harvest (A), grain protein concentration (B) and total amount on N apllied (C).  Data were 

collected in 27 french trials performed in 2023. 

 

The main factor in the success of a N fer7liza7on strategy is the ability to integrate the effect of the clima7c year on the 
crop's N requirements. Beyond the direct effect of the total N rate, the tac7c of spli�ng is also very important in 
maximizing nitrogen use efficiency. While an a priori calcula7on of the total N rate, as proposed by the balance sheet 
method, allows only very few adjustments during season, the integral management of N fer7liza7on is extremely 
reac7ve to growth condi7ons. Growth projec7ons from the CHN crop model, which determine wheat's nitrogen 
requirements, are regularly updated during the campaign to incorporate the real year's climate. In addi7on, by coupling 
CHN with on-board satellite sensors, the impact of non-climate-related accidents can be taken into account when 
revising N requirements. The tool's decision rules also enable to op7mize interven7on dates and adjust the 
recommended N rates to the dynamics of the wheat's N demand at each applica7on. The combina7on of these different 
solu7ons in the FERTI-ADAPT CHN tool gives it an enhanced ability to propose an op7mized fer7liza7on strategy. 

Conclusions 

The results confirm the poten7al of this new approach. It also opens up prospects for future developments, which will 
make it possible to op7mize fer7liza7on strategies by integra7ng new op7miza7on constraints, such as reducing the 
crop's carbon footprint. 
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Introduc7on 

There is increasing interest in growing chickpea (Cicer arieBnum L.) in Germany due to rising consumer demand and its 
posi7ve impacts on crop rota7on. Field experiments inves7ga7ng op7mal management strategies are 7me-consuming, 
expensive, and ojen offer only loca7on- and seasonal-specific informa7on. Crop growth models such as the Decision 
Support System for Agrotechnology Transfer (DSSAT) can be used to op7mize management strategies, including sowing 
dates. Finding the op7mal sowing date for a specific loca7on is one of the most important prac7cal founda7ons for 
successful cul7va7on. The DSSAT CROPGRO model is therefore of high value due to its flexibility, which reflects the 
different sensi7vi7es of the crop to temperature, photoperiod, water deficit, and nitrogen within the various 
developmental stages of the plant (Boote et al., 1998). In Southern Germany, weather condi7ons vary significantly 
throughout the year; therefore, it is necessary to consider the crop's sensi7vity to different weather condi7ons, 
especially during spring and summer, on plant growth and development. The CROPGRO-Chickpea model was ini7ally 
developed and calibrated using data from India, collected in 1984 and 1986, and is described in Singh & Virmani (1996). 
Due to the significant differences of growing condi7ons in Germany compared to India in terms of growing seasons, 
climate zones, and cul7vars, a calibra7on and evalua7on of the model were necessary to achieve sa7sfactory simula7ons 
with the DSSAT CROPGRO-Chickpea model. The objec7ve of this study was to find the crop model-based op7mum 
sowing date of chickpea in Southern Germany. 

Material and Methods 

For simula7ons, the DSSAT CROPGRO-Chickpea model (version 4.8.5, Hoogenboom et al., 2024) was used to generate 
the results presented in this study. As an experimental site, Ihinger Hof (48 ° 44´ N, 8° 55´ E, 475 m a.s.l), Renningen, a 
research sta7on of the University of Hohenheim located in Southern Germany, was used. The cul7var and ecotype 
coefficients were calibrated using a detailed data set collected from a field experiment at this loca7on, sown on 
30.04.2024, and evaluated with data from a second sowing date on 15.05.2024. Further evalua7on was conducted at an 
addi7onal loca7on and with two more years of experiments from 2022 to 2023 at Ihinger Hof loca7on (currently 
submixed). In the field experiment, the Elmo cul7var was used, which is an early-ripening desi-type chickpea, suitable 
for German growing condi7ons. For this crop model-based study, a total of four different sowing dates were used, 
including 30.04.2024 (actual), 15.05.2024 (actual), 15.04.2024 (fic7ve earlier sowing) and 30.05.2024 (fic7ve later 
sowing). Crop model-based sowing date sensi7vity analysis was conducted over a long period of weather data (historic 
weather, 2015-2024) to inves7gate the impact of in-season weather variability on grain yield for four different sowing 
dates. Input data for the soil profile and all other X-file inputs were averaged from the experimental data of both sowing 
dates in 2024. 

Results and Discussion 

The phenological stages: Emergence date, anthesis date, first pod date, and first seed date of both data sets in 2024 
were simulated with a maximum divergence between simulated and observed data of 3 days (Tab. 1). Due to pronounced 
indeterminate growth of chickpea, physiological maturity was not considered. Yield in 2024 was underes7mated with a 
divergence of 12 kg DM ha-1, respec7vely 224 kg DM ha-1 for the first and second sowing date. Further evalua7on also 



 
 

 

indicated a good agreement between simulated and observed values. A closer examina7on of the 2024 growing season 
revealed that sowing on 15.04. led to delayed plant development compared to other sowing dates (Tab. 1). The long-
term average of days reaching the corresponding phenological stage indicated that with a later sowing date, phenological 
stages are reached faster. The underlying reasons for this were that the higher daily temperature sums of later sowing 
dates led to the faster fulfillment of photothermal days. 

Table 1. Comparison of simulated and observed phenological stages in 2024 of cv. Elmo and the days to reach the corresponding phenological stage 
under four sowing dates. The days shown represent the average number of days from 2015 to 2024 to reach the corresponding phenological stage. 

Sowing date EDAT ADAT PD1T PDFT 

 Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. 

15.04.2024 19 - 65 - 74 - 80 - 

30.04.2024 12 15 55 57 63 64 71 72 

15.05.2024 11 9 50 49 59 56 66 64 

30.05.2024 12 - 55 - 63 - 71 - 

15.04.2015-2024 (Avg.) 18.3 - 64.9 - 73.6 - 80.5 - 

30.04.2015-2024 (Avg.) 14.6 - 56.3 - 65.4 - 72.4 - 

15.05.2015-2024 (Avg.) 12.4 - 50.3 - 59.4 - 66.0 - 

30.05.2015-2024 (Avg.) 9.9 - 46.5 - 54.5 - 61.6 - 

EDAT= Emergence date; ADAT= Anthesis date; PD1T= First pod date; PDFT= First seed date 

Growth-related variables, e.g., grain weight, tops weight, and leaf area index (LAI), were simulated with a high agreement 
between simulated and observed data (Fig. 1a). Considering the yield average from 2015-2024, the highest average 
yields were reached on sowing date 15.04. with 3514 kg DM ha-1. Delayed sowing decreases the yield to an average of 
3360 kg DM ha-1. Sowing on 15.04. resulted in the most stable yield, whereas later sowing tended to be more suscep7ble 
to higher varia7on (Fig. 1b). The harvest index (HI) is a crucial parameter in chickpea produc7on, par7cularly in rela7on 
to indeterminate growth. The highest HI was achieved on sowing dates: 15.04., 30.04., and 15.05. with an average of 
0.44, whereas sowing on 30.05. led to an HI of 0.43 (Fig. 1c). 

 

Figure 1. Simulated and measured data for crop model calibration date (30.04.2024) of tops, grain, and LAI (a), boxplots of grain yield (kg DM ha-1) 
of four sowing dates for 2015-2024 (b), and box plot harvest index of four sowing dates (c) for the period 2015-2024 at Ihinger Hof, Renningen. 

Conclusions  

The conducted study of varying sowing dates of chickpea under Southern German growing condi7ons over ten years of 
historic weather data revealed that for chickpea varie7es like Elmo, the op7mal sowing window is wide. It should be 



 
 

 

noted that sowing earlier (up to 15.04.) tends to increase yield, combined with higher yield reliability. Nevertheless, 
farmers can act flexibly when choosing op7mum sowing dates depending on factors like weather or soil condi7ons.  
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Introduc7on 

Soil is an essen7al natural resource that provides goods and services vital for ecosystems and human well-being. Recent 
advances in geospa7al technologies have made it easier to study soil proper7es and func7ons, genera7ng data that can 
be analyzed across space and 7me. When combined with mechanis7c models, this informa7on offers valuable 
opportuni7es to deepen our understanding of soil processes (Silvero et al., 2023). 

Recognizing the importance of modeling biomass produc7on in pastures and its spa7al variability, we propose a robust 
mul7disciplinary approach. In this sense, this research aimed to explore the correla7on between DSSAT-derived biomass 
outputs and environmental covariates, as a basis to support future digital soil mapping in pasturelands of the Brazilian 
Midwest. 

Materials and Methods 

The methodology comprises three main stages, as illustrated in Figure 1. First, remote sensing products, climate data, 
and legacy soil databases will be compiled, harmonized, and prepared as input for modeling pastureland with Urochloa 
brizantha using the DSSAT model. In the second stage, the harmonized dataset will be used to run DSSAT simula7ons to 
model pasture growth under baseline climate condi7ons (1980–2013). Finally, we will apply the Random Forest (RF) 
algorithm to explore spa7al rela7onships between environmental covariates and simulated biomass (kg DM ha⁻¹). 

Results and Discussion 

This research is expected to improve our understanding of the synergy between the DSSAT model and environmental 
covariates, enhancing model scalability, while also addressing knowledge gaps related to the lack of spa7o-temporal 
informa7on on pasture produc7vity in Brazil (Bolfe et al., 2024). 

Conclusions 

By the end of this study, it is expected that the developed methodology, based on the synergy between the DSSAT model 
and remote sensing data, will provide a robust tool for the scalable digital mapping of Urochloa brizantha pasture 
produc7vity. This approach directly contributes to filling the spa7o-temporal informa7on gap on forage produc7vity in 
the Brazilian Midwest, an essen7al factor for sustainable livestock intensifica7on. 

 

 

 

 

 



 
 

 

 

 

 

Figure 1. Workflow of the applied methodology. This study used a harmonized, open-access dataset, including climate (Ballarin et al., 2023), plant 
(Gomes et al., 2025), soil (Samuel-Rosa and Horst, 2024), and environmental covariates derived from remote sensing products processed on the 
Google Earth Engine plasorm (Gorelick et al., 2017). 
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Introduc7on  

Maize is an important crop in West Africa (WA). Land degrada7on and climate change further constraints its produc7vity 
and environmental sustainability thus promo7ng sustainable intensifica7on prac7ces (SIs) is strongly relevant in this 
context. Comprehensive field trials could provide understanding of the performance of SIs across loca7ons, nevertheless 
they are ojen lacking in WA. Moreover, successful upscaling of SIs prac7ces from specific loca7ons to regional scales 
requires further inves7ga7ng the suitability of SIs, especially under high spa7al and temporal heterogeneity of soil and 
clima7c condi7ons. Dynamic crop models represen7ng the impact of SIs e.g. manure and/or inorganic fer7lizers and 
their rates theore7cally could offer capabili7es to inves7gate the effects of those SI prac7ces on crop yield and soil 
nutrients.  

Materials and Methods  

We employ two crop growth models [SIMPLACE<LINTUL5> (S-L5) and APSIM] along with the measured data from maize 
field in the trial sta7on in Nyankpala and 19 farmer fields (Dimabi and Langa) in Northern Ghana in 2014 with different 
fer7lizer types and rates [no fer7lizer-control, inorganic (60N+40P+30K kg ha-1), manure (1.25, 1.5, and 5 ton ha-1), 
manure and half inorganic, inorganic and half manure] to inves7gate the suitability of two models to simulate effect of 
these SIs. The observed data included phenology, aboveground dry biomass (AGB), leaf area index (LAI), and grain yield 
which were collected from the common growing maize cul7var (Obatanpa) in Ghana. Both models were calibrated based 
on the given modeling protocol using the data from fer7lized plots in the trial sta7on then validated to the remaining 
treatments and farmer fields. We also examined uncertain7es in yield predic7on due to use of different combina7ons 
of soil (SoilGrid and FAO HWSD2.0) and climate (AgriERA5 and NASAPOWER) input data to the models. This modeling 
work resulted to 135 modeling combina7ons (03 soil data inputs x 03 climate data inputs x 3 loca7ons x 5 different 
fer7lizer treatments). 

Results and Discussion  

Calibra7on work shows that both models are able to simulate seasonal AGB and LAI. The APSIM model overes7mated 
LAI on 04 August and 27 August. The S-L5 overall simulated higher the AGB than the APSIM and the observed data on 
19 September and 15 October. The simulated grain yield of S-L5 and APSIM are 4.33 ± 1.67 and 3.82 ± 0.67 ton ha-1, 
respec7vely for the fer7lized treatments which are close to the observed yield (3.11 ± 0.75 ton ha-1). Compared to the 
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observed yield in the control treatment (1.47 ton ha-1), two models adequately simulated the low yield due to no 
fer7lizer with 1.62 and 1.26 ton ha-1, respec7vely. Two models capture well the decline of AGB, LAI, and grain yield 
caused by the reduced fer7lizer rates and types although onset and magnitude of simulated nitrogen stress differ 
between the models (Figure 1). Earlier and more severe nitrogen stress were observed in the control while later and less 
severe were found in the manure, the half inorganic and manure and inorganic treatments. Compared the observed 
data, the grain yield was sas7sfactorily simulated by two models under farmer fields with control fer7lizer (in Langa) and 
with manure (1.25 ton ha-1). However, S-L5 overes7mated the yield in the farmer field with the inorganic fer7lizer while 
APSIM showed the overes7mated yield under the manure applica7on (1.5 tons ha-1) in Dimabi. These illustrate the 
difference and uncertainty in the modeling performance between two models. Premilinary analysis with regards 
uncertainty due to the use of different clima7c input data reveals that the daily global radia7on from AgriERA5 was 
overall 10% higher than the observed data and NASAPOWER data (in Nyankpala) which could contribute to 10-50% 
difference in the simulated yield compared to the observed yield. These figures depends on the crop models (i.e. the 
larger difference was in APSIM compared to S-L5) and on fer7lizer treatments (i.e. the difference was more pronounced 
in the control treatment than in the inorganic treatment). Use the FAOHSWD soil data resulted in the larger simulated 
yield than the use of measured soil and SoilGrid data under the control treatment.  

 

 

 

 

 

 

  

 

 

Figure 1. Comparison of nitrogen index over growing season simulated by APSIM (a) and SIMPLACE(LINTUL5) (b) resulted from the different fer3lizer 
treatments in the maize field trial in Nyankpala, Ghana in 2014. The fer3lizer treatments were control (no fer3lizer), inorganic (60N+40P+30K kg ha-1), 
manure (5 ton ha-1), manure (5 ton ha-1) and half inorganic (30N+20P+15K kg ha-1), inorganic (60N+40P+30K kg ha-1) and half manure (2.5 ton ha-1). 
The ver3cal black lines indicate the fer3lizer applica3on events). 

Conclusions  

Our findings suggest a high poten7al of two crop models for their regional applica7on for inves7ga7ng the roles of SIs. 
However, cau7on must be paid to uncertain output variables which strongly depend on both model parameteriza7on 
and on soil and climate input data. 

Acknowledgements  
Authors thank the Federal Ministry of Research, Technology, and Space (BMRTS) for funding the COINS project in West Africa.  

References  

a) b) 



 
 

 

Op/mum maize sowing and variety agro-advisory summary for the Zambezi River Basin  

Mkuhlani Siyabusa*1, Abera Wuletawu2, Meklit Chernet3, Chimonyo Vimbayi4, Sila Andrew5, Omondi John 6, Chiduwa 
Mazvita4, Nyagumbo Isaiah4, Bendito Eduardo1, Moreno-Cadena Patricia5, Llanos Lizeth5, Gonzalez Arturo 7, Aguilar 
Andres7, Urfels Antony8, Tibebe Degefie 2, Seid Jamal2, Leroux Louise 1.9,10, Corbeels Marc 1,9,10, Devare Medha1 

1Internaaonal Insatute of Tropical Agriculture (IITA), Nairobi, Kenya 

2Alliance of Bioversity and CIAT, Addis Ababa, Ethiopia 

3Alliance of Bioversity and CIAT, Rome, Italy 

4Centre for Internaaonal Maize and Wheat Research (CIMMYT), Harare, Zimbabwe 

5Alliance of Bioversity and CIAT, Nairobi, Kenya 

6Internaaonal Insatute of Tropical Agriculture (IITA), Chitedze, Malawi 

7Alliance of Bioversity and CIAT, Cali, Colombia 

8 nternaaonal Rice Research Insatute (IRRI), Los Baños, Philippines 
9 AIDA, CIRAD, University of Montpellier, Montpellier, France, louise.leroux@cirad.fr 
10 CIRAD, UPR AIDA, 00100 Nairobi, Kenya 

Keywords: Climate adapta7on, crop modelling, decision support, digital agriculture, DSSAT  

Introduc7on  

Maize is a crucial food crop in Eastern and Southern Africa, providing at least 40% of the caloric intake for the rural and 
resource-constrained popula7on. It also serves as an essen7al input for industrial applica7ons and animal feed (Kornher 
et al., 2018). While the Zambezi Basin has the poten7al for high maize yields, actual produc7on is low due to inadequate 
fer7lity management and climate risks. This research aimed to develop improved fer7lizer recommenda7ons and 
enhance climate resilience by predic7ng poten7al water-limited yields across various season types and maize varie7es 
at scale. 

Materials and Methods 

The study focused on the Zambezi Basin, which includes Malawi and parts of Mozambique, Zambia, Zimbabwe, and 
Angola. The CGIAR-Excellence in Agronomy (EiA) Ini7a7ve aimed to predict poten7al maize yields as well as op7mal 
sowing dates and varie7es using the AgWise Water Limited Yield crop modeling pla�orm. The AgWise framework 
incorporates various crop models, including APSIM, DSSAT, WOFOST, and Oryzae. This research u7lized the spa7alized 
DSSAT 4.8 crop model, combined with weather and soil data from CHIRPS and AgERA5, along with soil informa7on 
from ISRIC. 

Simula7ons were conducted using 22 years of historical data (from 2000) for three generic maize varie7es (short, 
medium, and long) across nine weekly sowing dates. The outputs of these simula7ons were aggregated across 
different sowing dates, varie7es, and ENSO phases, allowing for the determina7on of op7mal sowing dates for various 
season types. The date with the highest median yield was designated as the op7mal sowing date. 

Season types were classified based on the three ENSO phases, with phase determina7on achieved using the Oceanic 
Niño Index (ONI). An ONI value greater than 0.5°C indicates El Niño condi7ons, while a value less than -0.5°C indicates 
La Niña. An ONI value between -0.5°C and 0.5°C signifies neutral condi7ons. 

 



 
 

 

Results 

The analysis aggregated maize yields across various sowing dates, varie7es, and ENSO phases. Notably, early sowing on 
November 2 resulted in high yields across all ENSO phases compared to other sowing dates. However, delayed sowing 
revealed differences in yield performance across the ENSO phases, with a rapid decline in yields under El Niño 
condi7ons. This paxern was par7cularly pronounced in long-season varie7es during the El Niño phase compared to 
short and medium varie7es (Figure 1). 

Short and medium-season varie7es exhibited greater yield stability, despite lower overall yields, compared to long-
season varie7es. Yield unpredictability was notably higher under El Niño condi7ons compared to La Niña and neutral 
condi7ons, par7cularly among long-season varie7es and, to a lesser extent, medium-season varie7es (Figure 1). 

El Niño condi7ons resulted in lower yields in the central and southern parts of the Zambezi Basin compared to the 
northern, northeastern, and western regions of Zambia. This paxern was consistent across different varie7es, with El 
Niño leading to reduced yields for short-season varie7es rela7ve to other types. 

The northern parts of the basin exhibited a lower standard devia7on, indica7ng higher yield stability compared to the 
central and southern regions. Consequently, there is a greater likelihood of achieving reliable yields in the northern areas 
than in the southern parts of the basin (Figure 1). 

 

 

Figure 1: Op7mum sowing dates across different varie7es and ENSO phases for Maize in the Zambezi River Basin. 

The earliest sowing dates, occurring in early November, are predominantly associated with long-season varie7es across 
the three ENSO phases. This trend is par7cularly pronounced during the La Niña and El Niño phases. In contrast, medium 
and short-season varie7es generally have slightly delayed op7mal sowing dates compared to long-season varie7es. 
Northern Mozambique experiences rela7vely delayed sowing dates during the neutral and El Niño seasons compared to 
the La Niña season (Figure 1). 

 



 
 

 

There is less varia7on in op7mal sowing dates within a specific variety and district. Long-season varie7es benefit from 
early sowing, while medium-season varie7es in Msekera experienced rela7vely delayed sowing dates. For short-season 
varie7es, the neutral phase saw delayed sowing dates, occurring around late December (Figure 1). 

Conclusion 

Early plan7ng generally results in higher yields; however, this outcome is con7ngent upon the variety and season type. 
Specifically, extremely wet and dry seasons may favor delayed sowing in the eastern parts of the Zambezi Basin. 
Addi7onally, there are greater chances of achieving higher yields in the northern parts of the basin compared to the 
southern regions. 
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Introduc7on  

Agriculture plays an important role in Honduras economy, contribu7ng nearly 12% of the na7onal GDP and serving as a 
primary source of livelihoods, par7cularly in rural areas (Keller, 2013). Despite its importance, the sector is highly 
vulnerable to clima7c variability and extreme weather events. Smallholders are especially at risk due to limited adap7ve 
capacity, scarce resources, and restricted access to essen7al informa7on (Jansen et al., 2006). These limita7ons increase 
their suscep7bility to yield losses. Addressing such challenges requires decision-support tools that provide site-specific 
informa7on to guide agricultural management planning. Although similar tools have proven their impact in other regions 
(Sotelo et al., 2020), Honduras currently lacks a crop modeling system capable of delivering locally tailored 
recommenda7ons. 

We propose “Suelos de Honduras: Site-specific crop modeling”, a tool system designed to generate site-specific 
recommenda7ons for five crops at the village level. The system integrates process-based crop growth models with 
historical climate, soil, and agronomic data to guide op7mal plan7ng dates and nitrogen fer7liza7on strategies, thereby 
improving management prac7ces with locally relevant informa7on. 

Materials and Methods 

Data sources 

Three primary inputs were used: climate, soil, and agronomic management data. Climate data were obtained from 
CHIRPS (precipita7on) and AgERA5 (temperature and solar radia7on) for 1990–2024. Soil informa7on was derived from 
SoilGrids, including 12 variables (e.g., pH, sand, clay, organic maxer) across five depths. Agronomic data is supplied 
directly by users when interac7ng with the pla�orm (Fig. 1A). 

Data processing 

Environmental data were processed through geospa7al transforma7ons in Python V3.12 to generate model-compa7ble 
input files. These were combined with user-supplied agronomic data (village loca7on, crop variety, and management 
prac7ces) to run simula7ons. 

Crop models 

The system supports maize, beans, cassava, coffee, and banana. For maize, beans, and cassava, the Decision Support 
System for Agrotechnology Transfer (DSSAT) (Jones et al., 2003) was used. Coffee simula7ons employed a model 
calibrated for Central American condi7ons (Van Oijen et al., 2021), and banana simula7ons were conducted by using a 
SIMPLE crop model (Zhao et al., 2019) (Fig. 1B). 



 
 

 

Results and Discussion Calibri pt 10 

Site-specific recommendaBons  

Climate and soil data are extracted at ~1 km resolu7on for the selected village and aggregated by soil texture 
classifica7on. This enables simula7ons that provide both village-level and intra-village recommenda7ons, offering a 
greater level of detail for decision-making (Fig. 1A). 

OpBmal planBng dates 

For coffee, the system simulates annual yield throughout the crop cycle (up to 12 years), showing differences in yield 
performance when plan7ng occurs in different decades. For the other crops, yield simula7ons are generated at 7-day 
intervals across the growing season, allowing farmers to iden7fy favorable plan7ng windows (Fig. 1C, top) and evaluate 
risks under ENSO condi7ons such as El Niño and La Niña. 

Nitrogen ferBlizaBon 

A Bayesian op7miza7on framework evaluates combina7ons of plan7ng dates and nitrogen applica7on rates to maximize 
yields (Fig. 1C, boxom). The system generates alterna7ve fer7liza7on strategies to improve yield performance for each 
plan7ng window. 

 
Figure 1. Workflow of the “Suelos de Honduras: Site-specific crop modeling” system for Honduras. A) Input data required for implementing the 
system. B) Processed-based crop models implemented to simulate plant growth for five different crops. C) Example recommendation results for 

maize. Top: yield responses across alternative planting dates. Bottom: Nitrogen fertilization recommedations generated using a Bayesian 
optimization framework 

Conclusions 

“Suelos de Honduras: Site-specific crop modeling” is the first site-specific, mul7-crop modeling system developed for 
Honduras. By integra7ng environmental data with smallholder-supplied informa7on, it delivers ac7onable 
recommenda7ons that can reduce yield variability, op7mize resource use, and enhance resilience in smallholder farming 
systems. 
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Introduc7on  
The climate emergency, closely linked to anthropogenic greenhouse gas (GHG) emissions, requires the adop7on of 
effec7ve mi7ga7on strategies in the agricultural and livestock sectors, which in 2017 contributed 6.1 Gt CO₂ eq per year 
to global emissions (FAO, 2017). In this scenario, sustainable management of soils and forage produc7on represents a 
key element for reducing environmental impact, but it also requires an innova7ve approach to farm management. The 
FAO (2015), through the “Climate-smart agriculture” model, highlights the importance of increasing produc7vity while 
minimizing environmental impact and op7mizing the use of resources, also with the support of digital technologies. 
Within this perspec7ve, Spoke 03 Appàre of the e.INS project – Ecosystem of Innova7on for Next Genera7on Sardinia – 
aims to support innova7on processes, promote their dissemina7on, facilitate the transfer of technologies to the 
produc7on system, and engage local communi7es in the challenges of sustainable innova7on. The project focuses on 
the sheep supply chain in Sardinia and is developing an innova7ve digital pla�orm capable of integra7ng exis7ng 
livestock and health databases, while also acquiring new data through advanced sensor technologies. The ul7mate goal 
is to provide decision-support tools for farmers, processors, and advisors, enhancing the economic and environmental 
sustainability of the sector and making the sheep produc7on and processing system more compe77ve and resilient. In 
this context, the present work focuses on the forage produc7on sector. 

Materials and Methods 
The e.INS pla�orm – Ecosystem of InnovaBon for Next GeneraBon Sardinia (Spoke 03 AGRIVET APPàre), s7ll in the form 
of a prototype, has been designed as a mul7-sector digital tool for the Sardinian sheep supply chain. It is structured 
into different sec7ons – animal produc7on, animal health, food safety, and a sec7on dedicated to the registra7on of 
veterinary inspec7ons – all interconnected with one another. Each sec7on collects specific indicators and contributes 
to building a decision-support system aimed at fostering innova7on in farm management. 
The forage produc7on sec7on has been implemented through the development of indicators designed to link both the 
availability and the quality of biomass to the nutri7onal requirements of livestock. These indicators were first 
organized into flowcharts, in collabora7on with the IT team at Abinsula, in order to define inputs and outputs. This 
process allowed the iden7fica7on of crop produc7vity through yields per surface unit, considering different produc7on 
types such as hay, silage, and grain. Forage quality was assessed through chemical-physical parameters such as %NDF, 
%ADF, protein content, ash, and starch, which also allow the calcula7on of the Rela7ve Feed Value (RFV). Agronomic 
prac7ces were also taken into account, including pedoclima7c informa7on (al7tude, water availability, sowing 7me 
and seed rate) as well as crop management techniques (soil 7llage, fer7liza7on, weed control, grazing, and mowing). 
Another indicator developed was nitrogen use efficiency, es7mated through the ra7o between nitrogen exported with 
the harvests (based on protein content) and nitrogen applied through fer7lizers, in order to evaluate both resource use 
and the environmental impact of cropping prac7ces. 
These data were then integrated with livestock requirements, considering the number of animals on farm, the length 
of produc7ve periods, and daily requirements expressed in Forage Unit for Lacta7on (UFL). This made it possible to 
es7mate forage coverage, namely the farm’s ability to meet the herd’s nutri7onal needs. 
In its current prototype version, the pla�orm provides synthe7c indicators such as UFL produc7on per hectare, analysis 



 
 

 

of farm forage coverage (required vs available hectares), the effec7ve dura7on of the coverage period ensured by on-
farm produc7on, and the share of unmet nutri7onal requirements. These outputs will be validated on pilot farms, thus 
allowing the pla�orm to be tested in real produc7on contexts and its actual usefulness as a decision-support tool to be 
verified, while also enabling the integra7on of management and produc7on indicators directly at farm scale. 

 
Results and Discussion 
 

 
Figures 1. Details of the e.INS – Spoke 03 Appàre plaoorm referring to the forage produc3on sec3on. 
 

The development of the e.INS – Spoke 03 Appàre pla�orm has led to the defini7on of specific indicators for the forage 
sector, allowing for the logical structuring of the sec7on dedicated to cereal-forage produc7on. These preliminary results 
highlight the poten7al of the pla�orm as a decision-support tool for farmers, thanks to its ability to interconnect 
informa7on from different sec7ons and provide a clear and comprehensive overview of farm performance, with a focus 
on improving sustainability. The integra7on of the various sec7ons represents an added value, as it makes it possible to 
overcome the fragmenta7on of farm data and to adopt a systemic view of the sheep supply chain, giving farmers the 
opportunity to maintain full control over their enterprises. 

Future ac7vi7es will focus on tes7ng the indicators under real farm condi7ons and refining the pla�orm based on the 
needs and feedback of farmers, with the aim of making it a truly transferable tool for the produc7on system. 

 
Conclusions  
The development of the e.INS – Spoke 03 Appàre pla�orm represents an innova7ve step forward in the management of 
the sheep supply chain in Sardinia, as it provides farmers with an updated overview of farm performance. In the forage 
produc7on sec7on, the integra7on of selected indicators makes it possible to link yields and product quality, 
management prac7ces, and resource use efficiency with the other components of the pla�orm, offering a useful tool to 
ensure farm sustainability. The work carried out in the forage sector represents a concrete example of how the 
integra7on of farm data and indicators can be translated into digital tools that support daily management and foster the 



 
 

 

transi7on towards more sustainable systems. Since the pla�orm is s7ll available in prototype form, the next ac7vi7es 
will focus on its valida7on, with the aim of making it fully opera7onal for end users. 
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Introduc7on  

Crop produc7on in Ethiopia is dominated by rainfed small hold farming, in which climate variability dictates produc7vity. 
Producers and experts have to make decisions, with out a clear knowledge how the season will evolve and the 
produc7on they are likely to achieve. Despite this challenge, Ethiopia currently lacks an opera7onal crop produc7on 
forecas7ng system to support planning and strategic decision-making. 

This study inves7gates the poten7al of predic7ng maize yields 1–2 months in advance using an integrated climate–crop 
modeling framework. 

The exis7ng opera7onal crop monitoring systems in East Africa largely focus on water availability without considering 
the complex reac7ons between climate variables and crop physiology. If agricultural communi7es are to benefit from 
seasonal climate and crop produc7on forecasts in managing climate risks, the informa7on must be presented in terms 
of produc7on outcomes at a scale relevant to their decisions, with uncertain7es expressed in transparent terms (Hansen 
et al., 2006). One way of achieving seasonal climate and crop yield forecast is using integrated climate-crop modeling 
framework. In Ethiopia, Tesfaye, et. al. (2023) demonstrate the possibility of seasonal maize yield predic7on using CCAFS 
Regional Agricultural Forecas7ng Toolbox (CRAFT) (Sheliaet al., 2019). 

A func7onal spa7al yield forecas7ng system could provide risk management op7ons leading to greater economic and 
social values under highly variable environments. Yet, no such forecas7ng system exists to support early decision making 
in developing countries dependent on smallholder agriculture, such as Ethiopia. In this study, we present the 
methodology, model evalua7on, results, and limita7ons of forecas7ng maize yield at the na7onal scale using a climate–
crop modeling framework. 

Materials and Methods 

Seasonal forecast from the European Centre for Medium-Range Weather Forecasts (ECMWF) were sta7s7cally 
downscaled using Emprical Quan7le Mapping (EQM) and evaluated against reference observa7on to assess if any 
improvement archived over raw model outputs. The downscaled seasonal climate forecast was integrated with Decision 
Support System for Agro technology Transfer (DSSAT) crop simula7on model to predict maize produc7on. The crop model 
run on a na7onal scale simula7ng maize at 10 km grid points. Simula7ons were run annually using a rule-based plan7ng 
strategy within a plan7ng window based on es7mates of agronomic onset of the wet-season using AquaBEHER R package 
(Takele R, and Dell'Acqua M, 2023). First the crop model simula7on was evaluated against agregated sub-na7onal level 
observed yield. Then the seasonal forecast driven simula7on (maize predic7on) was evaluated against observed weather 
driven simula7on. Model performance was assessed using Root Mean Squared Error (RMSE), Mean systema7c error 
(Bias), Index of agreement (d) and correla7on analysis was used in the evalua7on. 

Results and Discussion 

Downscaling improved the spa7al representa7on of mesoscale rainfall paxerns, capturing maxima and minima bexer 
than the raw forecast. However, the downscaled forecast consistently failed to reproduce the observed seasonal rainfall 
paxern, par7cularly in eastern highlands and in dry and wet years. 



 
 

 

 

The maize simula7on consistently overes7mates the observed yield for all propor7ons and occurrences. This 
overes7ma7on by simula7on exaggerated, predominantly over highland areas. However, the spa7al varia7on of the 
inter-annual yield variability was well reproduced by the simula7on, which indicates a poten7al for predictability. 

The associa7on between the observed driven simula7on and forecast driven simula7on is presented in (Figure 1). The 
forecast showed posi7ve linear rela7onship with the observed maize simula7on. About 55% of the inter-annual 
variability of the observed yield simula7on was explained by the forecast driven simula7on. This predic7ve success of 
the maize yield suggests, significant predictability of the maize yield across the country can be meet with reasonable 
skill. 

Figure 1. Comparisons of forecast weather driven simulated yield with observed weather driven simulated yield over the hindicast (1996 – 2010) 
period. 

Conclusions  

The study demonstrates the poten7al and usability of integrated climate-crop models by use case of forecas7ng maize 
yield over Ethiopia. We aims to sta7s7cally downscale and integrates the output from dynamical seasonal forecast model 
(ECMWF SEAS5) in to crop simula7on model (DSSAT-CERES-Maize) to predict maize produc7on on na7onal scale over 
Ethiopia. 

The assessment of the poten7al predictability of maize produc7on suggests, the maize forecast does well predict the 
observed maize yield. However, the forecast not in all cases was accurate. Slightly poor performance by the crop model 
in lower yield environments and highland climates affected forecast accuracy. Good performance to predict inter-annual 
and spa7al variability of the yields which indicates Maize yield can be forecasted around two months before plan7ng 
with a reasonable skill. Future work will use this integrated framework to simulate crop produc7on under perturbed 
climate and management scenarios, iden7fying agroclima7c stressors and cri7cal gene7c traits that can benefit 
sustainable smallholder farming systems under variable and changing climates. 
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Introduc7on  

Durum wheat (TriBcum durum Desf.) plays a pivotal role in food security, nutri7on, and agricultural economies across 
the Mediterranean basin, serving as the primary raw material for pasta and couscous (Taranto and De Vita. 2019; Xynias 
et al., 2020). Unfortunately, the Mediterranean area is widely recognized as a climate change hotspot (IPCC, 2025). Rising 
temperatures and altered rainfall paxerns are projected to reduce cereal yields and amplify spa7al variability, especially 
in rainfed systems (Lionello and Scarascia, 2018; Sellami et al., 2024). These condi7ons underscore the need for reliable, 
high-resolu7on yield predic7on tools to support 7mely and informed decision-making. Strong spa7al gradients in 
climate, soil, and management prac7ces make yield es7ma7on par7cularly complex at the field level. To address these 
challenges and support more precise, data-driven decision-making, we present a deep-learning framework for predic7ng 
harvested grain yield at field scale, based on freely available satellite imagery.  

Materials and Methods  

This study focuses on durum wheat fields located in the Capitanata district (Province of Foggia, Southern Italy), which 
represents the most important durum wheat-producing area in Italy, accoun7ng for approximately 15% of the na7onal 
cul7vated surface (ISTAT, 2022). The core model is a Temporal Fusion Transformer (TFT) (Lim et al., 2021), which ingests 
season-long sequences of Sen7nel-2-derived vegeta7on indices (e.g., NDVI, EVI) along with satellite-based weather 7me 
series (e.g., temperature and precipita7on). Sta7c geospa7al covariates, including digital eleva7on (DEM) and soil 
texture classes from pan-European sources (e.g., LUCAS), are incorporated as contextual features. 

Model hyperparameters were op7mized through systema7c tuning with early stopping, minimizing valida7on loss and 
maximizing R². Training follows a leakage-aware strategy that respects field boundaries and temporal coherence; 
generaliza7on is assessed via spa7al cross-valida7on, leave-one-year-out, and a strict leave-one-farm-out protocol, 
which withholds en7re farms to evaluate transferability across unseen management and site condi7ons.  

In addi7on to global performance metrics, the model is evaluated through spa7ally distributed R² and RMSE, computed 
at parcel/7le level, mapped across fields and seasons. Farm-level aggregates are reported under leave-one-farm-out 
folds to diagnose local bias and uncertainty. Benchmark comparisons include tree-based learners trained on iden7cal 
inputs (Choudhary et al., 2022; Zhou et al., 2023). 

Results and Discussion  

Yield observa7ons derived from combine harvesters equipped with calibrated yield monitors, covering approximately 
200 fields from mul7ple farms over five consecu7ve seasons (2021–2025), and pre-processed to remove lag and outliers 
(figure 1a). The TFT model achieves R² values between 0.60 and 0.75 across seasons, with RMSE ranging from 0.5 to 0.9 
t/ha depending on year and loca7on, outperforming baseline model and capturing within-field yield gradients (figure 
1b). 
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Figure 1. a) Area of the study with yield observations collected for five consecutive season, differentiated by colours; b) Example, derived from one 
field, of the spatial distribution of grain yield (top) and RMSE of the model (bottom). 

Conclusions  

This approach builds on recent advances in remote sensing and machine learning, demonstra7ng the poten7al of deep 
neural networks to capture spa7o-temporal paxerns in mul7spectral data for accurate and scalable yield es7ma7on. 
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Introduc7on  

Wheat yields are substan7ally constrained by bio7c stress, with pests and diseases (Savary et al., 2019). Disease 
development is strongly driven by environmental factors, par7cularly temperature and humidity, through their effects 
on host–pathogen interac7ons as conceptualised by the disease triangle (Scholthof 2007, Prasad, Bhardwaj et al. 2021). 
Among the most prevalent fungal diseases affec7ng wheat worldwide are yellow (stripe) rust (Puccinia striiformis), 
powdery mildew (Blumeria graminis) and Septoria tri7ci blotch (Zymoseptoria triBci) (Wang, Zia-Khan et al. 2019). 
Climate change is modifying temperature regimes and rainfall paxerns, with consequences for disease occurrence and 
distribu7on (Eastburn, McElrone et al. 2011, Miedaner and Juroszek 2021). Epidemiological models describe infec7on 
processes but are rarely linked to crop growth and yield, whereas crop simula7on models represent genotype × 
environment × management (G × E × M) interac7ons under climate change (Hammer, Cooper et al. 2006, Asseng, Ewert 
et al. 2015). Integra7ng disease processes into crop models remains challenging, but it is necessary for quan7fying yield 
losses under future clima7c condi7ons (Donatelli, Magarey et al. 2017). This research aims to improve an exis7ng wheat 
disease model and link it with a crop model to analyse the effects of climate change on wheat growth and yield under 
contras7ng disease pressures. The specific objec7ves are to: (i) enhance the representa7on of yellow rust, septoria tri7ci 
blotch and powdery mildew in a simple epidemiological model; (ii) integrate disease effects into a crop model to 
represent genotype × environment × management × disease (G × E × M × D) interac7ons; and (iii) quan7fy the combined 
impacts of climate change, disease infec7on and adapta7on strategies on wheat yield in Denmark and the North China 
Plain. 
 

Materials and Methods  

This research examines the effects of foliar wheat diseases on crop growth and yield under current and future clima7c 
condi7ons using a mul7-scale approach that combines literature synthesis, climate-based disease analysis, field 
experimenta7on and crop simula7on. A meta-analysis synthesises published data on infec7on temperature thresholds 
for yellow rust, septoria tri7ci blotch and powdery mildew, using reported minimum, op7mum and maximum 
temperatures to derive disease-specific temperature response curves and associated uncertainty. These curves provide 
parameter values for subsequent epidemiological analyses. Temperature and humidity responses will be applied to 
gridded hourly climate data to es7mate clima7c suitability for infec7on under historical condi7ons from ERA5 and future 
scenarios from ISIMIP. Field experiments in Denmark will examine the interac7on between water availability, nitrogen 
supply and disease type on wheat growth and yield using controlled inocula7on treatments. Disease effects are then 
incorporated into a crop simula7on model to represent genotype × environment × management × disease interac7ons, 



 
 

 

with experimental data used for calibra7on and evalua7on in analyses of climate change impacts and adapta7on op7ons 
in Denmark and the North China Plain. 

Results and Discussion  

The meta-analysis synthesised published informa7on on infec7on temperature thresholds for yellow rust, septoria tri7ci 
blotch and powdery mildew, based on reported minimum, op7mum and maximum temperatures. The analysis revealed 
clear differences among diseases in their thermal preferences, with yellow rust associated with lower temperatures, 
septoria with intermediate op7ma, and powdery mildew with higher temperature tolerance. Considerable variability 
was observed across studies, par7cularly at minimum and maximum thresholds, reflec7ng differences in experimental 
condi7ons, host cul7vars and pathogen popula7ons. Quan7ta7ve informa7on on rela7ve humidity and leaf wetness was 
limited and inconsistently reported, preven7ng their inclusion in temperature–humidity response rela7onships. 

The derived temperature response curves provide a consistent parameter set for future epidemiological and crop 
modelling studies. The results indicate that uncertainty in infec7on thresholds, especially at thermal limits, is likely to 
influence es7mates of clima7c infec7on suitability. Field experiments are designed to examine how disease effects on 
wheat growth and yield vary under different water and nitrogen condi7ons, with measurements of leaf area 
development, canopy func7on and yield components. Together, these results will provide key inputs for the 
development of coupled crop–disease models for analysing climate change impacts and adapta7on op7ons. 

Conclusions 

This study synthesises published evidence on infec7on temperature thresholds for yellow rust, septoria tri7ci blotch and 
powdery mildew and derives disease-specific temperature response curves with associated uncertainty ranges. The 
results show substan7al varia7on among studies, mainly at the minimum and maximum temperature limits, and indicate 
that quan7ta7ve informa7on on rela7ve humidity and leaf wetness requirements is ojen missing. These gaps contribute 
to uncertainty in disease parameterisa7on. The temperature responses, together with experimental evidence that 
disease effects vary with water and nitrogen supply, provide a basis for later climate-driven disease assessment and 
crop–disease modelling to examine yield impacts and adapta7on op7ons under changing clima7c condi7ons. 
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