e
ICROPM ::

FLORENCE "~ . c2

2026,

3rd International Crop
Modelling Symposium

Crop Modelling

under Global Change ot

February 2-4, 2026

Florence, Italy

POSTER

SESSIONS -




Crop Modelling for Agricolture

Decision making and innovation support

Field-to-Region Production Forecasting for Processing Tomato: An Integrated Model-DSS
approach

Merigqi Davide**, Marcello Edoardo Matteo?, Legler Sara Elisabetta’
1Horta S.r.l., R&D, 29122, Piacenza, Italy, d.meriggi@horta-srl.com

Keywords: Agri-food industry, Area production, Crop growth model, Stress models, Crop and Cultivar Parameters.

Introduction

The aim of the present study is to develop, calibrate, and validate a yield prediction model for processing tomato, using
data ranging from field experiments to regional assessments.

Crop growth models are essential for food value chains and regional forecasts, as climate change amplifies extremes and
interannual variability, heightening uncertainty in yield predictions from year to year (Yin et al., 2025). For agri-food
industries, reliable pre-season estimates across cultivars, transplanting windows, and sourcing regions that converge on
shared processing facility are essential to forecast processed output, optimize logistics, and anticipate deficits or
surpluses. Traditional statistical approaches, constrained by simplified structures and sparse information, inadequately
represent spatial heterogeneity in stressors and yield limits, and thus systematically under- or overestimate regional
yield gaps (Couédel et al., 2024). This underscores the need for robust and well-validated crop models, integrated with
local data, spatially explicit frameworks, and scalable extrapolation methods.

Materials and Methods

The yield prediction model (Figure 1) is incorporated into Horta S.r.l. processing tomato Decision Support System (DSS)
that integrates multiple components to accurately simulate crop growth, water and nitrogen balance, and key diseases
development (e.g., late blight). The model uses site-specific, crop, and cultivar parameters alongside weather variables
and incorporates field operations such as irrigation, fertilization, and pesticide treatments as factors that moderate the
impact of agronomically manageable stresses. This structure enables estimation of yield (t hal) and total production
(t), supporting scalable, field-specific to regional-level forecasting.
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Figure 1. Scheme of the processing tomato crop model linking inputs and stress sub-models to yield and production outputs.
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Calibration and validation used multi-year, multi-site datasets. Calibration dataset relied on field-plot trials, including
controlled irrigation to impose water-stress gradients, nitrogen-rate contrasts, and disease assessments; in selected
years cultivar contrasts quantified genotype-by-stress interactions. In addition to quantitative and qualitative harvest
data, specific trials measured in-season biomass partitioning (i.e. roots, stems, leaves and berries at the green, yellow
and red stages). Proximal sensing provided crop cover and leaf-area estimates. Table 1 reports locations, years, and
survey types. Validation dataset used commercial fields recorded in the processing tomato DSS, with complete records
of irrigation, fertilization, and plant protection. Study areas span Italy and abroad over multiple years. Each region-year
marketable fresh yield was evaluated by year, cultivar, sowing period (early/mid/late), and their interactions. Parameter
uncertainty was analyzed with Generalized Likelihood Uncertainty Estimation (Tan et al., 2019). Parameter estimation
used Differential Evolution (Martinez-Ruiz et al., 2021). Model performance was quantified with standard indices,
including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R?).

Table 1. Field-plot trials by location and year. Codes: W=water-stress assessment; N=nitrogen stress assessment; C=cultivar response; P=proximal
sensing; B=biomass partitioning sampling; D=disease-stress assessment.

Ravenna (IT) Foggia (IT) Utrera (ES)
2022 W,N,C,P,B,D - -
2023 W,N,C,P,B,D - -
2024 W,N,C,P,B,D - -
2025 W,N,C,P,B,D W,N,P W,N,C

Results, Discussion, and Conclusion

To date, the model has been calibrated and validated with 2022—-2024 data; 2025 observations will extend the analysis.
Validation on commercial fields yielded MAE < 14 t ha™ between observed and predicted yields, while regional
production showed R? > 0.80 across year, cultivar, and transplanting period. Because calibration data derive mainly from
Ravenna (ltaly), performance is expected to improve with 2025 trials in Foggia (Italy) and Utrera (Spain).

Through the DSS for agronomic operations, field technicians can consistently and comprehensively enter important
information into the crop model-DSS system, which in turn helps the agro-industry spatialize production at regional level
to monitor and guarantee a reliable supply of processed products within the area of interest.

References:

Journal article

Couédel, A, Lollato, R. P., Archontoulis, S. V., Tenorio, F. A., Aramburu-Merlos, F., Rattalino Edreira, J. ., Grassini, P (2025)
Statistical approaches are inadequate for accurate estimation of yield potential and gaps at regional level. Nature Food,
6(7), 715-724.

Journal article

Martinez-Ruiz, A., Ruiz-Garcia, A., Prado-Hernandez, J. V., Lépez-Cruz, I. L, Valencia-Islas, J. O., Pineda-Pineda, J (2021) ).
Global Sensitivity Analysis and Calibration by Differential Evolution Algorithm of HORTSYST Crop Model for Fertigation
Management. Water, 13(5), 610.

Py
!LgEEEQ..E M ’

<2026,




Crop Modelling for Agricolture

Journal article

Tan, J., Cao, J,, Cui, Y., Duan, Q.,, & Gong, W (2019) Comparison of the Generalized Likelihood Uncertainty Estimation and
Markov Chain Monte Carlo Methods for Uncertainty Analysis of the ORYZA_V3 Model. Agronomy Journal, 111(2), 555-
564.

Journal article

Yin, X., Leng, G., Qiu, J, Liao, X, Huang, S., Peng, J (2025) Crop Model Ensemble Averaging: A Large But Underappreciated
Uncertainty Source for Global Crop Yield Projections Under Climate Change. Earth's Future, 13(6), 1-17.

!LE;EEEOPM

2026




Crop Modelling for Agricolture
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Introduction

Various cropping systems that rely on irrigation for higher yields constantly face the challenge of knowing and
anticipating how much water at what plant development stage is indeed required by plants. By calculating available soil
water spatially according to physical soil properties over time throughout the growing period based on accumulated
biomass (plant water demand), water can be managed more efficiently. Crop growth models such as DSSAT can take into
account various interactions occurring in plantxenvironment dynamics on a daily basis (Hogenboom et al., 2024). Based
on soil physical properties, layer-based soil water holding limits, including lower limit (LL) and upper limit (DUL), are
calculated and define daily plant available water, following the tipping bucket approach with respect to soil drainage
factor and saturated hydraulic conductivity (Ritchie 1998). To run a DSSAT simulation, users require daily weather data
from the start of the simulation to harvest, as well as soil characteristics and crop management information. To use
DSSAT for “real-time” water management, a user can extrapolate historical weather data into the future. Crop model
simulations must be evaluated against sensor and biomass measurements to ensure that crop model parametrization is
correct. Especially in the case of water management, some simulation outputs can be directly evaluated against soil
moisture sensor measurements. The advantage of having sensor measurements is that users can evaluate crop model
parametrization of the soil water dynamics (layer-based) and measure current water status in the soil to produce more
informed management decisions in “real-time”. This Water Management software tool was developed to enable users
to combine DSSAT irrigation algorithms with sensor measurements to estimate “real-time” in-season plant water
demand.

Materials and Methods

The DSSAT CROPGRO-Chickpea model (v. 4.8.5, Hogenboom et al., 2024) was used to simulate in-season leaf area index
(LAI) and biomass accumulation under German conditions in 2024. The crop model was calibrated and evaluated within
other study that is currently under review. In this short study, only part of the results was shown, including LAI,
aboveground biomass (tops), grain weight, and soil water simulation at 15 cm depth (second layer in the soil file) for one
year.

DSSAT has the capability to determine daily irrigation based on soil water depletion and plant available water according
to two methods: growth stage-controlled automatic irrigation and ET-based automatic irrigation. The first method, used
in this study, relies on plantxenviornmentxmanagement dynamics for calculating irrigation requirements of the plant
per growth stage. The volumetric water content (VWC) variable, in combination with a defined soil management depth,
is used to determine irrigation at the point when the VWC reaches a lower threshold defined by the user as a percentage
of the available water-holding capacity (Lopez et al., 2017).

The Water Management external Python plug-in for DSSAT (test version) was developed to complement the existing
DSSAT irrigation method by enabling users to include layer-based soil water sensor measurements in the process of
determining irrigation deficits. A user can pass into the DSSAT File-T layer-based soil moisture sensor measurements and
calculate VWC Irrigation Deficit (VWCir) based on field capacity (DUL), permanent wilting point (LL), and different levels
of plant available water content percentages (e.g. 50, 60, 70 % etc.) (PAWC) (Eqg. 1). The final objective of the tool is to
combine model and sensor-based irrigation triggers into one practical irrigation recommendation (work in progress).
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VWCpr = DUL — [(DUL - LL) * (1 - PAWC)] (1)

The current version of the plugin was developed to work with one sensor measurement per soil profile. For this specific
study, 15 cm sensor readings were used to evaluate the conceptual framework for two sowing dates in 2024. The plugin
was developed to be used as a “real-time” decision tool, enabling users to update weather and utilize future forecasts.

Results and Discussion

The agreement between the CROPGRO-Chickpea simulation and measurements of phenological events, including the
onset of flowering, first pod, and first seed, was very good, with average errors of 0.6 and 3.3 days, respectively, for
the first and second sowing dates. Detailed statistics for LA, tops, and grain yield dry matter are shown in Table 1. RMSE
and d-Stat. of LAl and aboveground biomass indicated good agreement between simulated and measured data for two
sowing dates. End of season grain yield was not entirely simulated satisfactory and requires further improvement.

Table 1. CROPGRO-Chickpea evaluation statistics including LAI, tops ang grain weight for two sowing dates.

15cm LAI Tops Grain 15cm LAI Tops Grain
(cm3cm?3) (kg ha') (kg ha')
Sowing date RMSE d-Stat.
30.04.2024 0.03 (125) 0.64 (10) 1272 (11) 845 (7) 0.92 0.94 0.98 0.91
15.05.2024 0.05 (109) 0.61 (9) 377 (9) 734 (6) 0.78 0.95 1.00 0.90

(n) — total number of observations used.

In Figure 1 the Water Management tool interface is shown with preliminary results. The plug-in is already fully functional;
however, it requires further testing. Figure 1 (left) shows the tool setup with selected experiment treatment, soil water
layer 2 (SW2D), and PAWC 50 % (0.5). In Figure 1 (right), LL (LL2D), DUL (DUL2D), measurements, and VWCr threshold
line (T-2D) are shown. In Figure 1 (right) soil irrigation triggered based on soil sensor measurements is indicated with
star-styled markers, for all measurements below VWCr (T-2D).

7 Water Managment — O X W] WaterManagment = DX
S0 tmesees wad a0 ten  teax  wed e Setp  tmeseres  wad a0 ten  tmex  wnd e
1. CosSAT/CwdDes Lssecar || 4.
8 oter “ouT Solwat.oUT 0.40 4
2 read i experiment fes. |
ACTIVE only i Solwater out selected
1TBWI205.CHX OROLWTY o
oaton threshold (005.):
asterniiid UHIH2401.CHX T BimolAT
UHIH2201.CHX UHIH2401.CHX 2 Bmo2AT ooY DAY OF YEAR Day of year
UHIH2202.CHX Y DAS Days afterst  Days after start of simulstic
= UHIH2401.CHC 3 FLATAT oyc afiarsk Dy 0.35 4
UHIH2301.CHX REBRNCEO % RAZAT SWTD Totsl water  Total sod watesin profile (¢
230 :
mEeCH UHIH2401.CHX S FLATAT opt.em| WO S vate o Sacactable
UHIM2303.CHX UHIM2401,CHX 6 FLAZAT opt. e ROFC Cum Runctf mm Cumulative
UHIH2401.CHX ORNC Drainage Mm weimve [ 7 \L\|] |\®@ e\ | [ | SW2D
PREC Precipitation  Cumulative precipaation (1
Run DSSAT to check fles | e Iigation®  Imigation applications (no) 0.30 4 —— SW2D-updated
RRC Iig effect mm Cumulative
3. Select ".cov fle Tog_t25.cov < LATFC Lateral flow mm Subsurface — LL2D
oTwt Water table cm Water table
Lood novile I MWTD Mulch water mm Water store buL2D
f— T0FD Tiedrinage Waterlosttotiedinen | | NI}y & [\ ¢ | |..... T-2D
WIH hesders: oo hesders: Mitpler T0FC Cum. tle drsin Cumaative 0.25 1
@0 - 0.00% ROFD Surface runoff Total dady ¢ . @ Sw2D
R0SD Satsurf runoff Daily surface runolf due to
N 10 SWID. SWC layer 1 Scd water, sod layer 1 (cm
™AX 10 W0 SWClayer2 ol wates, sod layer 2 (cm?
SW30 SWClayer 3 Sod water, sod layer 3 (em?
RAN ) WD SWClayerd  Sod wates, sod layer 4 (cm 0.20 4
%3 s o e B :
Ram - 10
weite new wth bosed on *.csv | 22 Lpdated *WTH Run
""" 31T00:00:000.23
and rgate 20; 2 0.15 T T ? | T
pate 20; 2
and rigate 20 g r 1°1A " 101}. 5 _107_ 5 _LQ-LA i 10-;_&
2 @ ! 0 @
= a™ o N N S
24

Figure 1. Water Management tool interface (left); simulation output including sensor measurements, LL, DUL and irrigation threshold (T-2D) (right).

The problem with the irrigation trigger in the tool is that it is based on one sensor layer depth. Ideally, the entire root
zone soil water depletion should be considered, especially if sensor measurements for multiple depths are available.
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Conclusions

For the data presented, the soil water simulation line had a very similar trend to the sensor-based soil water
measurements. This is not always the case and can cause serious problems if VWCr is based on inaccurate LL and DUL.
Since soil water content simulation calculated in the model based on soil properties and weather conditions is not always
accurate, a combination of crop model-based irrigation recommendation with sensor-based recommendation might
offer more realistic values.
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Introduction

According to OECD-FAO (2020), the world population will reach 8.4 billion by 2029, requiring sustainable increases in
agricultural productivity. Brazil plays a key role in global food supply, particularly the MATOPIBA region (Maranhdo,
Tocantins, Piaui, and Bahia), where Western Bahia has recently become important for its soybean expansion (CONAB,
2025). This growth highlights the need for effective tools to monitor agricultural productivity.Traditionally, crop
monitoring in Brazil is conducted through field surveys by official agencies which is time-consuming, and costly, while
remote sensing enables systematic crop monitoring with vegetation indices that indicate crop vigor.Among the most
widely used indices are the NDVI and EVI. Recently, the NDRE has demonstrated advantages for crop monitoring. Given
the agricultural expansion in Bahia, this study aimed to evaluate the use of vegetation indices for monitoring soybean
development throughout the growing season in Western Bahia, Brazil.

Materials and Methods

The study area was Western Bahia, Brazil, which had 2 million hectares of soybean planted in the 2024/2025 crop season.
The methodology was developed to monitor soybean vegetative vigor by comparing current season NDVI values with
the historical NDVI and climate time series. First, soybean areas were identified using land use map from MapBiomas
(Souza et al, 2020) from 2019 to 2024. Climate data, including precipitation, were obtained from the ECMWF forecast
and used to compose a 30-year historical series (1994-2024). NDVI was calculated using monthly Sentinel-2 satellite
imagery from 2019 to 2025. Data processing was carried out in Google Earth Engine using Python scripts. NDVI results
were analyzed over time using a three scale—stable, warning, and alert—based on the GEOGLAM Crop Monitor
methodology (Becker-Reshef et al., 2020).

Results and Discussion

For the 2024/2025 crop season, most municipalities showed NDVI values at or above historical averages, indicating
favorable vegetative vigor, particularly in Baiandpolis, Cocos, and S3o Desidério (Figure 1). With the advance of the dry
season, precipitation remained low and consistent with historical averages, leading to reduce NDVI due to limited water
availability, the end of the harvest, and Brazil’s soybean sanitary void. The integration of NDVI and climatic monitoring
provides monthly updates on crop vigor, supporting producers in crop development dynamics and adapting to
environmetal conditions.
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Figure 1. Vegetative vigor map for Western Bahia (green: stable, yellow: warning, red: alert), highlighting Barreiras, Baiandpolis, and Jaborandi.

Conclusions

Monitoring soybean crops using time series of satellite imagery and climate data holds significant potential for
agricultural planning and strengthening rural extension services. Its informative nature enables the early detection of
crop issues such as pests, diseases, or water stress. Therefore, vegetation indices and climatic data are valuable tools for
providing real-time insights and supporting timely decision-making in the field.
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1. Introduction

Crop simulation models like DSSAT (Hoogenboom et al., 2024) have become increasingly important for studying
the effects of climate change and supporting agricultural decision-making. However, most research relies on
experimental data, which reduces its applicability in real-world situations where data is limited. For example,
(Boote et al., 2018) examined how elevated temperatures affect soybean and peanutyields, while (Debnath et al.,
2021) applied a quantile mapping technique to estimate rice yield gaps across India's diverse agro-climatic zones.
Studies that use real-time data rather than controlled experiments are few and tend to focus on larger farms, which
are less representative of typical Indian agriculture. With nearly 89.4 per cent of farming households in India
cultivating less than two hectares, farmers are marginal and vulnerable to climate-related crop losses. Calibrating
DSSAT for farms under two hectares can therefore support better resource management.

This study applies a quasi-experimental approach using primary data collected from 65 smallholder soybean
farmers in Keshegaon, a drought-affected village in Maharashtra, India. The objective is to calibrate the DSSAT-
CROPGRO model for soybean cultivation under rainfed conditions with limited available data. Because this
research relies on real-time field observations instead of controlled experiments, data gaps remain a challenge.
In-depth details of soil analysis, surface texture, drainage depth, etc and difficulty obtaining cloud-free satellite
images, present challenges, as soybean is a Kharif crop dependent on the monsoon, making explicit imagery
harder to acquire.

The calibration is validated using two indicators: the difference between actual and simulated yields, which
provides a measure of the model's accuracy in predicting real-world outcomes, and the comparison between
modelled and satellite-observed soybean growth phenology derived from leaf area index (LAI), which ensures the
model's ability to replicate the plant's growth stages as observed in the actual plots.

2. Materials and Methods

Keshegaon, a small village in Tuljapur tehsil of Dharashiv (formerly Osmanabad) district in Maharashtra, lies
approximately 32 km from the sub-district headquarters of Tuljapur (Ref; Figure 1A, supplementary table S1). We use a
structured questionnaire to ensure systematic data collection and capture key aspects of farming operations by including
sections on- (a) basic information of the plot (e.g., Land area, GPS Route identification number, previous crop, irrigation
type, soil type etc.), (b) management practices (e.g., planting and sowing dates, fertilizer used, tillage operations), and
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(c) economic factors (e.g., input costs, labour charges and other associated expenses). The data acquired through this
instrument act as inputs to run the DSSAT seasonal models for each plot.

2.1 Data

The average yield of the sample size taken is 1867.92 kg/ha with a median of 1700.55 kg/ha, indicating a slight right
skew in the yield distribution. The maximum yield observed within the sample is 5922.37 kg/ha, making it the outlier of
the entire sample, while the lowest is 681.26 kg/ha. There is considerable variability among the sampled plots, as
suggested by the 821.13 kg/ha standard deviation. Most of the sampled plots fall within the +1 standard deviation range
of 2689.05 kg/ha and 1046.78 kg/ha (Ref; Supplementary table S2)

2.2 Sampling

Keshegaon has 1144 farmers, 409 of whom are small landholding farmers, and 555 of whom are marginal landholding
farmers. We could identify 807 farmers from the village's agricultural records based on the beneficiaries of various
government schemes. Using a stratified sampling to ensure representation across different landholding categories, our
study sample consisted of 75 farmers for farm-level data collection. It was possible to acquire data and details for 68
farmers out of our sample of 75. Further, out of those 68 plots, three experienced complete crop loss primarily due to
excessive water stress and waterlogging conditions, leaving us with a sample of 65 farmers for further analysis. These
65 marginal farmers have below 1 hectare of land, and 10 small farmers have 1-2 hectares of farming land.

2.3 Analytical approach
Sentinel-2 image calibration

Using a GPS device, we map the 75 farms, process them in Google Earth Pro, and code them as "routes" to identify
and refer to. Simultaneously, we extract the Sentinel-2 images for the crop cycle dates from 1st June 2024 to 30th
November 2024. We chose NDVI as the vegetation index and processed the pixel-wise NDVI using GEE and R-
Studio. The NDVI was converted to LAl using the LAIr package (Bajocco et al., 2024); as the equation for Sentinel-
2 is not available yet, the equation for LANDSAT by "Kross et al., et.al 2015" was used, keeping in consideration
that both the satellites have similar sensors.

DSSAT model calibration

The extant literature served as the repository for the mandatory field details such as location longitude, latitude and
elevation. The gram panchayat provided Dharashiv's daily weather data. Again, information on some unknown
parameters not accessible through primary data was taken from existing literature, while we use arbitrary values for
some others. For soil depth, we followed (Shaikh & Birajdar, 2015). Motarjemi et al. (2023), in their research on the
effects of drainage conditions on sandy loam soil, mention the water table depth of sandy loam soil to be 200-300 cm.
It is a close fit to our location as the soil texture is sandy-loam. Following Nargund et al. (2024), we manually add the
data for Genetic coefficients to the soybean cultivar file for JS-335.

For this study, we define an ideal yield difference as less than 100 kg/ha due to the small size of the farms. A default run
of all 65 farmers resulted in 4 farmers having the perfect fit of less than 5kg/ha yield difference. We divide the farmers
into two groups for Run 2, where 25 are isolated from the remaining 65. Multiple simulations were conducted on these
25 farmers, adjusting various parameters in each run. The farmer was excluded from the list when the model output
was less than 100 kg. After completing the simulations for all 25 farmers, the remaining 40 were processed using the
optimized values obtained.
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We convert the Leaf Area Index (LAI) from the DSSAT simulated results into a phenology curve according to sowing and
harvesting dates. After cleaning, we compared it with the LAl obtained from the Sentinel images to include only the
dates when both DSSAT and satellite data were available.

3. Results and Discussion

We categorize the results into three groups based on the yield difference: 'Group-A': 0-10 kg/ha yield difference, 'Group-
B': 10-20 kg/ha yield difference and 'Group-C': >20 kg/ha yield difference. Eight plots fall within Group A, two fall within
Group B, and the remaining fifty-five plots are in Group C. These results indicate the model's performance in predicting
soybean yields, with Groups A and B showing the closest predictions.

Actual Yield and Simulated Yield

Route 42 reports an exceptionally high yield at 5922.37 kg/ha with a total production of 3900 kg, making it an extreme
case scenario, or an outlier among the samples we analyzed separately. However, the rest of the plots fit the model well.
Among all calibrated plots that predicted yields below 100 kg/ha (Table 1), six plots demonstrated near-perfect
alignment with observed data, with yield differences of less than 5 kg/ha. The lowest yield difference emerges in Route-
80, with an actual 1202.39 kg/ha yield. At the same time, the model simulated 1202 kg/ha, resulting in a yield difference
of just 0.39 kg/ha, achieved in the default run itself. It suggests that the farmer's practices on this plot were highly
accurate, with management practices aligning with model expectations.

Four plots reported yields lower than the range of the average yield. Meanwhile, six plots reported yields exceeding the
average standard deviation range. However, the total production of these plots is higher than some of their yields. When
the simulated yield by the model is under the average range but the farmers' reported yield is less than that of the
model, it indicates crop loss due to multiple factors. Route 51, for instance, reported a total production of 1200 kg on a
1.76-hectare plot, resulting in an exceptionally low yield of just 681 kg/ha. Some plots have opted for different cultivars
such as DS-228, MAUS-612, and KDS-228; they show lower yields as they stand differently from the JS-335. The variation
in genetic coefficients associated with these cultivars may not align well with the corresponding management practices.

This series of simulation runs helped identify a set of optimal input values for soybean cultivation in DSSAT under data-
scarce conditions. These values, derived from field data, literature references, and iterative calibration, can be reliable
defaults when input data are limited or unavailable.
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Figure 1: A) Location map of plots in Keshegaon, Maharashtra, created on ArcGIS pro; B) Spaghetti Plot for DSSAT derived soybean phenology with
satellite derived LAl for all plots; C) Scatter plot of actual yield reported and simulated yield by DSSAT; and D) Scatter plot of yield reported and max-

med sentinel NDVI
Route Number Area (ha) Actual Yield Simulated Yield
(AY) (Kg/ha) Yield (SY) Difference
(kg/ha) (AY-SY)
Route - 19 0.69 1514.27 1515.8 -1.53
Route - 63 0.22 1357.34 1357.5 -0.16
Route - 80 0.30 1204.17 1202 2.17
Route -12 0.51 2376.24 2373.5 2.74
Route -70 0.24 2517.20 2514 3.20
Route - 71 0.19 1263.96 1260.5 3.46

Table 1: Plots showing <5 kg/ha yield difference

DSSAT obtained phenology vs satellite phenology

The model correctly captures the basic timing of the crop's phenology, and the satellite data also follows the same
pattern (Figure 1 B). However, the model underestimates the maximum LAl compared to the satellite's observed.
Contrary to the later stages, the satellite fails to show the initial stages of growth due to the unavailability of images on
the sowing to maturity dates. Despite the shortcomings, the DSSAT LAl and satellite-derived LAl show a coefficient of
variation of 0.88 (Ref; Supplementary Figure S3).

4. Conclusion

Merging crop models with satellite imagery can offer deeper insights into crop growth, particularly for smaller
farms, and improve yield forecasting for better mitigation of crop loss and optimized resource use. By training
models with satellite-derived LAl data, simulations can be refined for greater accuracy, providing valuable support
to the crop insurance industry where insurers can assess risks, process claims fairly, and expedite payouts
following climate-induced crop losses. Together, these efforts can transform agricultural resilience and
productivity for smallholder farmers.
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Supplementary Tables and Figure

Table S1:
Basics
1. Village Name Keshegaon Taluka
2. District Dharashiv, Maharashtra
3. Geographical Area 1644.22 hectares
4. Agro-climatic zone Zone 10 (Southern Plateau and hills region)
5. Total population 4949 (2011 census)
6. Average temperature 21°C-42°C
7. Average rainfall 50 cm —100 cm
Agricultural details
1. Total Cultivable land 1569.30 hectares
2. Rainfed land 1373.25 hectares
3. Total Farmers 1144
4. Large Landholding farmers 180
5. Small Landholding farmers 409
6. Land under Kharif crop 1307.00 hectares
7. Land under Rabi crop 1065.0 hectares

Supplementary Table 1: Details of study area; Keshegaon
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Table S2:

Statistic Value Notes
Sample Size 65 plots Final sample after filtering
Average Yield 1867.92 kg/ha Mean of observed yields
Median Yield 1700.55 kg/ha Central tendency indicator

Maximum Yield

5922.37 kg/ha

Outlier in the dataset

Minimum Yield

681.26 kg/ha

Lowest yield observed

Standard Deviation

821.13 kg/ha

Indicates variability among plots

+1 Standard Deviation Range

1046.78 — 2689.05 kg/ha

Most plots fall within this range

Supplementary Table 2: Data description

Comparsion of DSSAT and Sentinel LAI
54
R?=088 RS TR
o'? k SRR §
o & ° “a o
4 ° ° A4 .: ?f < .;.
o . e
Ng . . * o * o % s
£3 ¢ % ¢ e s * o
:’ ® P .. L
5 ..... . [ ]
= % LI o M ¢
5 21 i ° &
» " . ° . . .
a} . . % * o
1
.03 . .
. ¢ o* *
o
0 il 2 3 4 5
Sentinel NDVI to LAI(m?/m?)

Figure S3: Scatter plot of DSSAT LAl and Sentinel LAl
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Introduction

Process-based models are essential for predicting European grassland dynamics, which have declined since the 1960s
due to intensified agriculture and land-use changes. Among these, PaSim simulates long-term biogeochemical fluxes
(Graux et al., 2011), GrasProg targets short-term growth dynamics of intensively managed ryegrass swards (Peters et al.,
2022) and ModVege incorporates vegetation traits to capture biomass quantity and quality (Jouven et al., 2006). This
study integrates these models into GraminR, a new R-based model library developed by Joint Research Centre (JRC),
expanding on the LINGRA model available on the Agri4CAST CGMS platform (https://code.europa.eu/agri4cast/lingra).
GraminR advances this concept by offering a more flexible and scientifically reproducible framework for ensemble

simulations and model evaluation. The overarching objective is to establish a harmonised, interoperable and multi-
model simulation framework for European grasslands, facilitating intercomparison, reducing uncertainty and
strengthening decision-making for sustainable land management.

Materials and Methods

Model integration was conducted using a modular R-based workflow with standardised input/output handling. GrasProg
was re-implemented in R from its original equations, PaSim (Fortran-based) was encapsulated with an R interface and
ModVege, already in R, was adapted as a proof of concept by being within the GraminR framework. The system supports
dual deployment: standalone (outside GraminR) for local testing, and integrated (within GraminR) for operational use at
the JRC. Standardised functions were developed to manage climate data (daily/hourly), soil properties (texture, organic
matter, depth), management practices (mowing, grazing, fertilisation) and vegetation traits. An automated reporting
tool was implemented for model evaluation, using harmonised European datasets with consistent spatial referencing
via the INSPIRE grid (https://inspire.ec.europa.eu). Climate forcing was provided in NetCDF format, and soil data sourced
from established databases (Baumann & Escriu, 2019). Model outputs - specifically dry matter yield - were evaluated
against independent observations from 12 long-term experimental sites (multiple plots) across Europe: five in France,

three in Italy, and one in Greece, Sweden, Switzerland, and the UK. Performance was assessed using global modelling
efficiency (EFg), mean absolute error (MAE) and two ensemble-based indicators - multi-model average (MMA) and multi-
model median (MMM).

Results and Discussion

This study establishes a reproducible multi-model workflow within GraminR, addressing reproducibility is crucial in
process-based modelling, especially when models are recoded or wrapped into new environments. Reproducibility -
both methodological and inferential - is ensured through standardised inputs, procedures and outputs, enhancing
transparency and scientific rigour. Validation confirmed full consistency between the R-based GrasProg and its original
version, and between the R-encapsulated PaSim and its Fortran executable, using both legacy (PaSimieg) and updated
(PaSimnew) configurations. Another key advancement is GraminR’s automated evaluation tool, which streamlines input
preparation, simulation execution and performance reporting. It provides three core benefits: (1) reproducibility through
ICROPM ::
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transparent, shareable and consistent evaluation protocols; (2) scalability for large-scale model intercomparison using
harmonised datasets; and (3) operational integration with the Agri4CAST platform for ensemble model evaluation. These
developments ensure that models can be evaluated reproducibly, and achieve operational results for agricultural
forecasting and policy support. Quantitative evaluation highlights the value of ensemble modelling (Figure 1).

TR
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MAE (ag DM

MMA MMM PaSim,, PaSim., GrasProg ModVege MMA MMM PaSim,e, PaSim., GrasProg ModVege
Figure 1. Performance metrics for predicting annual dry matter yield (12 sites). (Left) Global modelling efficiency (EFg). (Right) Mean absolute error
(MAE, kg DM ha™"). Model outputs from the model ensemble (mean: MMA; median: MMM) are compared with four model realisations.

Across 12 European sites, MAE ranged from 1184 for PaSimnew to 1798 kg DM ha™" yr™ for GrasProg. Ensemble outputs
consistently outperformed single models, with MMA of 1088 and MMM of 1104 kg DM ha™ yr™' (Table 1), reducing
relative MAE from ~60-70% (individual models) to a more manageable ~50% (model ensemble). Ensemble robustness
was further confirmed by fewer sites with EFg<0: ~35% for ensembles versus >70% for GrasProg and ModVege.

Table 1. Model performance indicators across 12 European sites (annual dry matter yield).

Metric MMA MMM PaSimnew PaSimieg GrasProg ModVege
Number of plots 37 37 37 37 34 34
Mean MAE (kg DM ha) 1088 1104 1184 1286 1798 1465
Mean relative MAE (%) 51.5 53.1 58.1 69.6 68.9 62.1
Mean EFg -0.0 -0.1 -0.3 -0.7 -2.3 -1.3
Sites with EFg<0 (%) 35.1 37.8 46.0 59.5 70.6 70.6

While the MMM consistently enhanced overall accuracy, each model showed distinct strengths and limitations, e.g.:
PaSim is robust but computationally demanding, GrasProg is efficient but ryegrass-specific, ModVege provides detailed
vegetation traits but underperforms under drought conditions. This reinforces the value of ensemble approaches for
accurate, resilient predictions and informed agricultural policy (Bellocchi, 2023).

Conclusions

GraminR is a major step forward in agroecological modelling as the first interoperable, multi-model framework for
grassland simulation within the European Commission's forecasting platform. By recoding GrasProg in R and
encapsulating PaSim, it ensures scientific reproducibility and transparency. The integrated reporting tool standardises
data and workflows, enabling large-scale, ensemble-based assessments. This approach enhances robustness, reduces
prediction errors and leveraged complementary model strengths, ultimately supporting sustainable grassland
management evidence-based agricultural and environmental policy in Europe.
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Introduction Calibri pt 10

Global food security is increasingly threatened by geopolitical unrest and climate change (FAO, 2024). Within this
context, the extent to which we rely on domestic food production or trade as a means of achieving food security needs
to be examined. Timely and reliable crop yield forecasts are vital for agricultural sustainability and food security
interventions that can help to contribute to this balance. Yield forecasts weeks or even months in advance of harvest
are increasingly common using methods including machine learning (ML), statistical and process-based crop-climate
models, and remote sensing data (Schauberger et al., 2020).

Most crop yield forecasts operate at lead times of just one to two months, often too short for meaningful post-harvest
interventions or on-farm management planning. Only a handful of forecasts extend beyond four months, with these
showing limited predictability (Schauberger et al., 2020). In addition, most approaches rely on seasonal climate
forecasting, which has proven value in agricultural decision making, although it can be costly and computationally
expensive. In the United Kingdom (UK), national scale wheat forecasts are based on surveys and historical data rather
than modelled predictions, and forecasting studies are rare compared to other European countries (Schauberger et al.,
2020). As a result, post-harvest planning, trade and supply logistics, and within season management decisions such as
fertiliser applications are sub-optimally informed.

Materials and Methods Calibri pt 10

We develop a winter wheat yield forecasting system and identify key management decisions that can be supported by
the model, as agreed with a UK farmer stakeholder network. The General Large Area Model for annual crops with
Satellite remote sensing data (GLAM-Sat) embeds ML algorithms to predict crop development alongside integration of
biomass estimated from Normalized Difference Vegetation Index (NDVI) data. A logistical function is used to finish the
growing season at different lead times. Through dialogue with stakeholders, we examine the key management and
supply chain decisions that can be informed by the model.

Results and Discussion Calibri pt 10

GLAM-Sat shows high skill in reproducing interannual variability of historical yield data when driven by NDVI data for the
whole growing season (Figure 1A; R2 0.8). Skill gradually reduces as lead time increases, with R2 0.66 when making an
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end of season prediction with NDVI data cut off on April 1% (Figure 1B). Skill is generally significant in Eastern regions
that grow the most wheat.
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Figure 1. Correlation coefficient between observed and simulated yields. A: data for all of growing season. B: four month lead time, i.e. no NDVI
data from April 1.

Conclusions Calibri pt 10

GLAM-Sat shows skill at lead times of up to four months, and therefore able to inform key UK wheat management
decisions as identified by stakeholders. For example, between February and April, nitrogen is applied to maximise yield.
In May and June, additional nitrogen is applied to milling wheats to meet protein targets, with needs shaped by yield,
soil nitrogen, and markets. Post-harvest planning in the UK can also be successfully informed, with the imports necessary
to meet wheat demands estimated and accounted for. Haulage, labour, trading, and storage also hinge on predicted
tonnage. Our results principally target UK national institutions such as the UK’s Department for Environment, Food and
for Rural Affairs, whose information will ultimately aid farmers and actors further down the supply chain - improving the
efficiency, environmental outcomes, and profitability of these decisions.
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Introduction

Mechanistic models are increasingly used in digital agriculture to predict crop growth and automatize processes for
precision agriculture. DSSAT (Decision Support System Agrotechnology Transfer; www.DSSAT.net) is one of the most
powerful and widely applied crop modeling system (Hoogenboom et al., 2019). Its embedded CROPGRO family models
have been successfully adapted to more than 27 crops (Boote et al., 2021). Beyond its original development for legumes,
CROPGRO was extended to several crops. However, a fully developed DSSAT-Cropping System Model (CSM)-CROPGRO
model for onion is still lacking, despite the worldwide interest in such a crop. The current study aimed to adapt and
develop CSM-CROPGRO model suited to simulate onion growth and predict N management.

Materials and Methods

The experimental data were obtained from field studies conducted at Oppeano municipality (Verona province),
northeastern Italy, during 2021-2025, using varying N rates (138 to 220 kg N/ha). The onion cultivar Borettana was used
for model testing. Soils were analyzed for key physicochemical properties at the start of each season, and daily weather
data were collected from a nearby station. Onion growth traits, biomass, and N concentration in leaves and bulbs were
monitored biweekly, and soil N content was measured during the season. The starting template was the species,
ecotype, and cultivar files for the CROPGRO-Soybean model in DSSAT v4.8.5 (Hoogenboom et al., 2024). Species-specific
parameters were defined based on literature values and measured data in the field (e.g., N content). Model input data
included soil characteristics, weather data, and crop management. Experimental time series of growth, N content, and
yield at harvest were used to evaluate the model performance. Experimental data from 2023 and 2025 were used for
model calibration. Cultivar- and ecotype-specific genetic parameters were optimized against observed growth and yield
data using sensitivity analysis.

Results and Discussion

From the CROPGRO-Onion model calibration, species genetic coefficients reflected its specificity, especially the
vegetative growth, leaf expansion, and the critical transition to bulb growth. Onion sensitivity to photoperiod governed
bulb initiation rather than flowering, highlighting the need for species-specific parameterization to accurately simulate
growth and yield. The results showed a close agreement between simulated and observed biomass values (leaves and
bulbs, Fig.1.), canopy height, and N concentration in crop tissues, with d-statistics above 0.84 and low RMSE. However,
specific leaf area, LAl and the number of leaves per plant require further optimization.
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Fig. 1. The red line (simulated) and red points (observed) represent T1 (138 kg N ha™", 2025), while the green dashed line (simulated) and green points
(observed) represent T2 (145 kg N ha™", 2025). The black solid line (simulated) with blue points (observed) corresponds to T1 (168 kg N ha™, 2023),
and the black dashed line (simulated) with black points (observed) corresponds to T2 (220 kg N ha™, 2023).

Conclusions

The CSM-CROPGRO model was adapted for Borettana onion by modifying species coefficients and calibrating cultivar
and ecotype files, resulting in good agreement, especially for yield and final N uptake. However, improvements are still
needed for simulating crop traits such as aboveground biomass growth and LAl to improve N management throughout
the crop season.
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Introduction

Agriculture in water scarce environments faces critical challenges due to reduced and erratic precipitation patterns and
increased competition for limited water resources, severely impacting crop yields and agroecosystem sustainability.
Furthermore, precision irrigation is facilitated with real-time simulated forcing from observed plant metrics such as leaf
area index and soil moisture, enabling dynamic, spatially resolved irrigation recommendations based on accurate crop
and soil statuses (Zucaro et al., 2024; Ahmad and Sohel, 2025) by means of integrated tools as spatial decision support
systems (Rinaldi and He, 2014).

The aim of the research is to describe and evaluate a decision support systems developed in a water scares environment
and applied to field crops.

Materials and Methods

The Easy Simulator Crop Model (EaSiCroM) decision support system is designed to operationalize irrigation scheduling
through simulation of crop growth and soil water interactions, enabling adaptive irrigation based on precise crop water
demand. Notably, EaSiCroM'’s crop growth simulations incorporate the influence of ambient CO, concentration alongside
irrigation management and water stress, thus integrating environmental and management-driven factors for improved
crop water use efficiency estimation.

EaSiCroM accepts user inputs describing crop parameters, soil properties, and meteorological data in standard digital
formats. The system simulates crop biomass accumulation and canopy development through empirical sigmoid and beta
growth functions, dynamically adjusted for temperature variations and water stress effects as represented by soil water
depletion and plant available water values (Garofalo et al., 2020). Users can select from different irrigation triggering
mechanisms: fixed irrigation turns, irrigation triggered upon reaching soil water depletion thresholds, or plant available
water thresholds.

EaSiCroM supports simultaneous multi-simulation runs covering monoculture, crop rotations, and complex field
heterogeneity via plot-specific IDs. The platform allows for long-term simulations and incorporates climate forecasts,
supporting both tactical and strategic irrigation approaches in water scarce environments.

Results and Discussion

Preliminary studies conducted using EaSiCroM on selected crops such as tomato and cotton have demonstrated the
system's capability to simulate canopy cover development, biomass accumulation, transpiration dynamics, and soil
water availability in water scarce agricultural systems. Simulation outputs closely aligned with observed data, confirming
that EaSiCroM irrigation scheduling algorithms, triggered by soil water depletion or plant available water levels,
optimizes water application and limits wastage. Precision irrigation scenarios, leveraging near-real-time data inputs,
Fzee
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effectively capture intra-field spatial variability (Fig. 1), allowing for differential water applications tailored to the needs
of sub-plot areas.

These preliminary findings underscore EaSiCroM'’s potential to sustainably improve water productivity and maintain crop
yields under challenging water availability. Its straightforward parameterization, modular design, and accessible user
interface promote broad adoption by farmers, advisors, and water resource managers, bridging agronomic research and
practical water conservation strategies (Sportelli et al., 2024).

Conclusions

EaSiCroM is a scientifically rigorous and operationally flexible decision support tool fostering sustainable irrigation
management within water scarce agricultural systems. Its multi-simulation framework with real-time data integration
makes it applicable from precise field-scale management to regional water resource planning. EaSiCroM is freely
available at: https://drive.google.com/drive/folders/1EOFg5Hk 4uOxaCV1ilXixGHEfSvWL4aK?usp=sharing

supporting dissemination of best irrigation practices in water constrained agricultural regions.
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Introduction

Groundwater (GW) is a vital resource for sustaining crop growth, and fluctuations in groundwater levels (GWL) directly
affect agroecosystems (Tao et al., 2022). Small shifts in GWL can significantly affect agroecosystems and farm economies,
especially under climate change (Shabbir et al., 2023). Therefore, it becomes important to identify the GW depletion
hotspots. However, in many regions, GWL data remain limited due to sparse spatial coverage and discontinuous
observations (Tsypin et al., 2024). Recent studies show that machine learning techniques can provide useful GWL
estimates; however, these approaches often overlook spatial information such as distances and observations from
nearby monitoring points. In this study, we examine the added value of including such spatial covariates by applying
Random Forest for Spatial Interpolation (RFSI). To assess its performance, we compare the RFSI model against a
conventional Random Forest (RF), a spatially adapted Random Forest (RFsp), and a Support Vector Machine (SVM).

Materials and Methods

We used RF, RFsp, SVM and RFSI to predict and map GWLs at 1 km x 1 km resolution in the federal state of Brandenburg,
Germany. The RFSI model incorporates covariates accounting for (1) observations at the nearest locations and (2) their
distances, enabling spatial context within the RF model. GW head measurements from 1,840 piezometers were available
for 2001-2022. We selected wells suitable for analysis, excluding those affected by anthropogenic or extreme climate
events. Selection criteria included: (1) data consistency, (2) observational uncertainty (RMSE < 0.25 m) and (3)
continuous well functionality.

Results and Discussion

Table 1 shows the Leave-one-out cross-validation (LLOCV) accuracy of the four models. RF performed worst due to
limited covariates and its inability to capture residual spatial autocorrelation. RFsp accuracy improved by adding buffer
distances but was still less effective than RFSI. RFSI outperformed both RFsp and SVM, likely by better capturing links
between GWLs and environmental covariates (Sekuli¢ et al., 2020). This improvement aligns with (Leirvik and Yuan,
2021), who found the mean of the five nearest stations most predictive for interpolating missing surface radiative fluxes.
The trained RFSI model was applied to generate continuous, high-resolution (1 km?) monthly GWL maps for 2001-2022,
covering unmonitored sites and piezometers with missing data. As shown in Fig. 1, high R? values confirm strong
agreement between simulated and the observed GWLs across sites since 2016.
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Figure 1. RFSI-based monthly groundwater depth estimates (blue line) and historical data gap filling (red dotted line)
Table 1. Model type, performance evaluation, hyper-parameters and computing time.
Model | RMSE (m) MAE (m) R? ntree  min.node.size mtry Sample fraction Computing time (min)
RF 4.78 2.847 0.563 586 6 1 0.85 60
RFsp 4.51 2.836 0.654 485 3 6 0.65 125
RFSI 3.92 1.866 0.671 250 3 6 0.87 21
SVM 4.56 3.25 0.432 - - - - 350
Conclusions

In this study, we proposed and tested a framework for mapping GWL using observations from the nearest locations along
with their distances as additional covariates in a RF model. The resulting gridded GWL database was generated at a 1
km resolution. Our findings show that the RFSI model outperformed conventional ML methods (SVM, RF, and RFsp), with
the added spatial covariates significantly improving predictive accuracy and capturing long-term GWL trends. The
framework also produced reliable predictions for unmonitored sites and piezometers with missing records. Model
performance from 2016 to 2022 highlights the RFSI approach’s ability to reconstruct historical estimates using nearby
observations and environmental variables.
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Introduction

The Irish ruminant sector is dependent on a grass-based system. However, fluctuations in the demand for grass silage
supplies in recent years have increased interest in supplementary high-yielding forage crops, such as forage maize,
despite variable annual yields in recent years (CSO, 2024). The cultivation of small-grain cereals on suitable soils in Ireland
often yields among the highest grain yields globally. Hence, whole crop small-grain cereals may serve as a stable buffer
forage supply for the ruminant sector. There have been limited studies that facilitate the evaluation of small grain cereals
as forage crop options in Ireland. This study aimed to estimate the consistency and spatial variability of potential spring
barley aboveground biomass yield using a parsimonious crop simulation model.

Materials and Methods

The Teagasc Spring Barley Yield Potential Crop Growth model is a simple growth and development model which utilises
incident intercepted radiation, thermal time and precipitation data to simulate aboveground biomass and grain yield on
a daily time step based on benchmark GAI and growth stage (GS) values observed by Kennedy et al. (2017). The
aboveground biomass yield at GS 85 was extracted as a representation of whole-crop barley dry matter yield potential.
Daily climate data were obtained from seven synoptic weather stations across Ireland from Met Eireann (2009-2023;
Fig. 1a). The model was calibrated with observed data from nine multi-environmental experiments. March 15 was
selected as the sowing date throughout the evaluated years, and the available water capacity of the soil was 285 mm.
Therefore, the simulations represent the consistency of growth and development conditions, independent of factors
that influence the sowing time and differences in soil type.

Results and Discussion

The simulated aboveground biomass yield ranged between 11.22 t DM ha (Dublin) and 18.29 t DM ha! (Galway; Fig.
1b). The coefficient of variation (CV) ranged from 4.3% (Donegal) to 10.3% (Carlow). This difference is likely due to
Donegal experiencing consistent rainfall and moderate temperatures throughout the period, while the greater variability
in Carlow reflects greater interannual fluctuations in incident solar radiation and drought events in the simulation at this
site.

For grain yield, the variability was more substantial than that of aboveground biomass yield, ranging from 7.25 to 24.2%.
The CV values were greater than 10% for all the sites except Donegal (7.25%). The highest mean simulated grain yield
was recorded in Donegal and Cork (9.91 and 9.74 t ha'), whereas the least was simulated from Carlow (8.32 t ha?; Fig.
1c). Carlow and Dublin (24.2% and 20.9%) recorded the highest variability as compared to Donegal (7.25%), which
recorded the least variability.
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Figure 1. (a) Study sites and spatial variability of simulated spring barley (b) aboveground biomass at GS85, and (c) grain yield at maturity.
Conclusions

Simulation results indicated that the aboveground biomass yield potential exhibited lower interannual variability than
the grain yield at a number of evaluated locations in Ireland. Furthermore, the largest mean yield differences between
sites tend to reflect the likelihood of drought impact in model simulations, when differences in soil profiles and sowing
date were not considered.
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Introduction

Since 2019, the Moorepark St Gilles Grass Growth (MoSt GG) model (Ruelle et al., 2018) has predicted daily on-farm
perennial ryegrass (PRG; Lolium perenne L.) growth in Ireland using local weather and farmer management data
(nitrogen (N) fertiliser application, pre-/post-grazing sward height, rotation length). It simulates N dynamics, including
organic and mineral N, N leaching and gaseous emissions. In the last 5 years, white clover (WC; Trifolium repens L.) )
adoption has increased in Ireland to reduces reliance on synthetic N fertiliser and help improve farm profitability. Given
the increasing adoption of PRG-WC based systems, it is essential to adapt the MoSt GG model to accurately predict PRG-
WC sward growth.

Materials and Methods

MoSt GG model, developed in C++, is a mechanistic process-based model running at a 2 m? scale and a daily time-step.
Based on the original PRG model, the new version adds WC biomass dynamics, biological N fixation (BNF) and inter-
species competition. While PRG relies on soil mineral N uptake only, WC balances soil N with atmospheric N fixation,
which increases as soil mineral N declines (Ledgard et al., 2001). The growth and environmental response functions use
species-specific parameters with new functions developed for WC N nutrition. The outputs include daily growth, biomass
partitioning, N and water dynamics, BNF and sward N content.

Simulations were run over 21 years (2003-2023) of Teagasc Moorepark synoptic weather station data. A heavy (HS) and
a free draining (FD) soil were compared. Two sward types were simulated (PRG- only and PRG-WC) under rotational
grazing (21- or 30-day interval), with three N fertiliser rates compared (0, 150 or 250 kg N ha; ON, 150N, 250N). Cow
number per grazing rotation was automatically adjusted to graze the available biomass (>4 cm) in a day with a fixed
intake of 16 kg DM cow™.

Results and Discussion

Annual herbage yields were always higher for PRG-WC than PRG-only. The yield response on FD soils to addional N
fertiliser application was greater for PRG-only than PRG-WC (+21 vs +18 kg DM kg N%; from 0 to 250N), but PRG-WC
produced 3 t DM ha more than PRG-only at 0 and 150N, with the gap narrowing at 250N. Similar results were
observed on HS soils, with higher absolute yields for PRG-WC (Fig. 1C). The model reproduces the benefit of clover at
low N and the dimishing return of increasing N fertiliser. The greater PRG N response leads to PRG outcompeting WC,
with WC content falling from 24-30% at ON to 5-18% at 250N, consistent with field data (e. g. Burchill et al., 2014). At
150N, PRG-WC yield outperformed PRG yield at 250N by 7% on average, showing the efficiency of BNF as a substiture
for N fertiliser. The PRG-WC supported more grazing days, particularly on HS soils, and longer rotations (Fig. 1A). The
year-to-year and seasonal variability was well reflected (Fig. 1B), for example, the 2018 summer drought affecting
growth. Peak growth was reached earlier for PRG-only swards than PRG-WC swards. The BNF declined as N fertiliser
inputs increased (fig. 1D), from 70-81 to 32-48 kg N ha, due to a reduced WC content and its simulated inhibition by
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soil N (Ledgard et al., 2001). On HS, PRG-WC produced more despite less WC and BNF than on FD soils. This is partly
explained by more N leached in FD soils and lower N mineralisation rate.
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Figure 1 : (A) average annual number of cows grazing days and standard deviation for each treatment combination (light grey is ON, dark grey is
150N and black is 250N) ; (B) average growth of PRG-WC swards at 150N (black) and PRG swards at 250N (red) for the average of the period (dotted)
and in 2018 (summer drought; plain); (C) comparison of cumulative growth on PRG+WC swards (PRG in black, WC in grey); and (D) total N input (N
fertiliser (black) + N fixation (grey)) to PRG-WC swards under a 30-day grazing rotation for all combinations of soil types (FDS = free drainins, HS =
heavy) and N rates.

Conclusions
A new sub-model was developed for the MoSt GG model to simulate growth on PRG-WC swards. Evaluation shows that

it can simulate BNF and predict herbage yield, quality, and seasonality as expected.
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Introduction

Nitrogen (N) fertilization is a key factor in achieving high crop yields, ensuring product quality and maintaining soil
fertility. For an economical and environmentally friendly crop production, it is necessary to apply the optimum amount
of nitrogen fertilizer in line with the crop’s N-demand. In practice, however, determining the optimum fertilizer rate is
still a challenge, as numerous influencing factors have to be taken into account, e.g., the targeted crop yield or the
content of plant-available mineral nitrogen in the soil. Therefore, this contribution presents a model-based approach for
site-specific nitrogen fertilization, which takes into account the variability of crop growth and nitrogen uptake based on
sensor-derived soil properties and weather forecast during the growing season.

Materials and Methods

The approach was first developed and tested on a 29-hectare arable field in Brandenburg, Germany, within a crop
rotation (winter triticale (Triticum aestivum), winter rye (Secale cereale), sorghum (Sorghum bicolor) and winter triticale)
between 2019-2022. Nitrogen uptake was modelled and N-fertilization prescription maps were computed for winter
triticale in 2022. For the biomass and grain yield simulation, the "Model for Nitrogen and Carbon Dynamics in Agro-
ecosystems" (MONICA) was used (Nendel et al. 2011). High-resolution (10 m) maps of clay, silt, and sand in 20 x 10 cm
layers were derived from inverted apparent electrical resistivity (ERa) data collected with the Geophilus multi-sensor
platform (Lueck & Ruehlmann, 2013) and calibrated using soil samples taken from 3-5 horizons in 10 representative
profiles (Roudsari et al., submitted). Together with soil organic carbon (SOC) maps of the topsoil derived from Sentinel 2
bare soil images (Schroter et al. 2025), the soil texture maps were used to derive soil physical and hydrological
parameters (bulk density, pore volume, field capacity and permanent wilting point) by applying pedotransfer functions.
Daily weather data (precipitation, temperature, radiation, windspeed and relative air humidity) was taken from the
German Meteorological Service (DWD) for historical data and for prognostic data from the European Centre for Medium-
Range Weather Forecasts (ECMWF). Modelled soil moisture was validated with soil moisture monitoring data from 2023
and 2024 of the 10 profiles using TDR and PR2 probes (UP Umweltanalytische Produkte GmbH, Cottbus, Germany). The
triticale yield forecast was modelled once using the daily documented weather data and once the prognostic weather
data. The evaluation of the biomass and yield predictions were compared with harvester monitoring data. Results in the
N-requirements and associated costs were compared to a field uniform fertilization strategy.

Results and Discussion
The root mean square error (RMSE) for the 3D clay map was 13.9% (coefficient of determination, R? = 0.52), for sand
14.1% (R? = 0.71), for silt 4% (R? = 0.78), for SOC 0.27% (R* = 0.71) and for the modelled soil moisture distribution at
the survey dates 4 Vol% (R? = 0.75). The crop yield, N-crop removal and the N-requirement were modelled for the first
N fertilization date (1 March 2022), the modelled mean yield of the field was underestimated by only 0.22 t ha'* using
the documented daily weather as reference. Using the prognostic weather, the mean yield deviation was 0.86 t ha™.
However, the amplitude of spatial differences was not yet simulated adequately in both predictions. Nevertheless, the
prediction of crop yields was used to estimate the expected N removal at the harvest date. While the field uniform
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fertilization approach resulted in a N quantity of 135 kg N/ha, the quantities calculated using the site-specific approach
varied between 40 kg N ha in the low-yielding sandy areas and 130 kg N ha™ in the loamy areas having an average of
101 kg N ha. The site-specific fertilization resulted in estimated savings of around 51 € kg'* ha! compared to the

"traditional" fertilizer requirements.
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Figure 1. Left: Workflow to determine variable N-fertilization. Right: spatial variability of the original yield harvester monitoring (upper left),
modelled yield data based on dicumented weather data (upper middle), modelled yield prediction based on weather prognosis (upper right), N-crop
removal of the triticale yield (lower left), model based N-deman (lower middler) and farm based field uniform N-demand (lower right).

Table 1. Overview variability of yield modeling compared to harvester monitoring data (SD = standard deviation).

Min Max Mean SD

Yield mapping harvester 0.2 10 5.7 1.8

Yield modelling with documented weather data 3 6.7 5.5 1.4

Yield prediction with prognostic weather data 3.7 7.9 6.6 1.5
Conclusions

The developed approach can be used as a decision support for site-specific nitrogen fertilization. However, the need for
improved model parameterization and calibration of the underlying soil texture and SOC maps as well as soil moisture
modeling is required to address spatial heterogeneity more adequately. Savings in the total fertilizer costs of approx.
25% could be realized as 35 kg ha'* more fertilizer was applied than necessary in the conventional approach.

Acknowledgements

The research was conducted within the project ‘TONIA - Teilflachendifferenziert-optimiertes Nahrstoffmanagement im
Ackerbau (engl.: Sub-area differentiated-optimised nutrient management in arable farming)’ (https://tonia-eip.de/)
which is part of the agricultural European Innovation Partnership program (EIP-AGRI) to improve agricultural productivity
and sustainability (Project No.: 204021000003/80259061) and was funded by the

European Agricultural Fund for Rural Development of the European Commission and by the Ministry of Rural
Development, Environment and Agriculture of the state Brandenburg in Germany.

References

Lueck, E., Ruehlmann, J. (2013): Resistivity mapping with GEOPHILUS ELECTRICUS - Information about lateral and vertical
soil heterogeneity. Geoderma 199, 2-11. https://doi.org/10.1016/j.geoderma.2012.11.009

oi e
!LgEEEO’P M

2026




Crop Modelling for Agricolture

Nendel, C., Berg, M., Kersebaum, K. C., Mirschel, W., Specka, X., Wegehenkel, M., Wenkel, K. O., & Wieland, R. (2011): The
MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecological Modelling,
222(9), 1614-1625. https://doi.org/10.1016/j.ecolmodel.2011.02.018

Roudsari, S., Bonecke, E., Ruhimann, Gunther, T, Robust automated processing of continuous electrical resistivity
measurements for soil texture mapping in Support of optimized precision farming, submitted

Schréter, 1., Post, S. (2025). Die Kartierung von Parametern zur Bestimmung des Bodenhumusgehaltes im Oberboden.
(engl.: The mapping of parameters to determine the soil humus content in the topsoil.) In: Kramer, E., Rihlmann, J.,
Gebbers, R. (eds) Sensorgestiitzte Kartierung von Bodeneigenschaften fiir die teilflichenspezifische Kalkung (engl.
Sensor-based mapping of soil properties for site-specific liming). Springer Spektrum, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-69174-8 5.

el
!LE;EEEO’PM

2026



https://doi.org/10.1016/j.ecolmodel.2011.02.018
https://doi.org/10.1007/978-3-662-69174-8_5

Crop Modelling for Agricolture

PastureBase Ireland — Results from Ireland national grassland database and decision support
system

O’Donovan, Michael’, Maher, Paul*

1Animal &Grassland Innovation Centre, Teagasc, Moorepark, Fermoy, Co Cork, Ireland michael.odonovan@teagasc.ie

Keywords : Grassland, Decision support, databases, grazing.

Introduction

PastureBase Ireland (PBI) is a web-based grassland management decision support tool that was first developed in 2013
for Irish grassland farmers. The secondary purpose of PBl is to serve as the national grassland database for Irish grassland
farmers. PBI is designed to allow grassland farmers to improve their grassland management on farm. It offers farmers
‘grassland decision supports’ and stores the data from dairy, beef and sheep farmers in a central national database. In
2024, there was over 14,000 farms registered on PBI. Approximately 50% of all pasture covers are now uploaded from
the PBI mobile application where users with more than 25 annual covers on PBI use the mobile application for most of
their data recording events. There has been a clear, continual increase in grassland measurement on dairy farms over
time. The integration of the Moorepark St Gilles (MoSt) grass growth model into PBI started in 2023 and will be rolled
out fully in the next years. The objectives of using PBI on grassland farms is to focus on optimising pasture utilisation
across all ruminant sectors, improving farm productivity, promoting sustainable grazing practices and supporting
evidence-based decision-making on Irish grassland farming. This paper investigates the grassland management
performance from a 11 year dataset of a sample of grassland farms (n = 163) taken from the PBI database and describers
their performance from 2013 -2024.

Materials and Methods

PastureBase Ireland

Pasture Base Ireland (PBI) (Hanrahan et al., 2017) has a range of grassland support tools available to farmers to assist in
short-, medium- and long-term grassland decisions. Each year there is a growing number of farmers using the
application. In 2024, over 142,000 farm covers were recorded, an increase of 43,000 since 2022. There is a clear, and
continual increase in grassland measurement across the country, which has been aided by the grassland measurement
requirement for farmers with a nitrate’s derogation plan. Currently over 2,000 spring/autumn rotation planners are
completed in PBI per year. There are over 11 Application program interfaces linked from external Agri industry partners
linked to PBI, these include Jenquip plater meter, Grasshopper plate meter, dairy Co-ops, Feed and soil analysis labs etc.

On Irish farms clover is now becoming more popular, due in part to reductions in chemical N allowances on farm. A
number of new decision support tools have been developed in PBI to assist strategic decision making regarding nutrient
application, including the ‘Nitrogen Planner’, Nitrogen Cycling calculator. Conserving adequate feed levels for the winter
period is a growing challenge for farmers in recent years due to grass growth variability and climate challenges. A key
tool has been developed in PBI to allow farmers to quantify fodder supplies on their farms. PBI has developed as an
influential software tools that farmers can use to better manage their grassland systems.

Results and Discussion

Grazing management and grass DM production data from 163 farms recording >35 covers on PBI annually over an 11-
year period (2014 — 2024), annual pasture growth averaged 13.2 t DM/ha during that period, with 7% variation in DM
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production (+/- 907 kg DM/ha) between years. Spring pasture DM production had greater variation compared with
summer and autumn (Table 1). On average, over the 11 years, spring (Jan — April) pasture DM production was 1.8 (+/-
0.3) t DM/ha, summer (May — July) DM production was 6.2 (+/- 0.5) t DM/ha, and autumn (Aug — Dec) DM production
was 5.3 (+/- 0.3) t DM/ha. The average number of days at grass ranged from 274 to 296 days between years, with an
overall mean of 285 grazing days.

Figure 1. Weekly grass growth on PastureBase Ireland dairy farms (2013- 2024)

—g—2(24 —=@=—1() year average =—@=>5 ycar average

(0]
o

Grass growth (kg
D¥/ha/&)y

N
o

0
Ol-feb Ol-mar Ol-apr Ol-mag Ol-giu Ol-lug Ol-ago O1-set O1l-ott Ol-nov  01l-dic

Conclusions

PastureBase Ireland is a multi-purpose grassland tool that allows farmers to improve grazing management, fodder
security, and nutrient management on the farm. It is an ever-evolving decision support tool. The objective within PBI is
to continue to add new features to help farmers’ usability of the application and to improve management practices on
farm. Future developments that are planned include greater incorporation of the MoSt grass growth model into the
application. The future of grassland systems will depend on the ability to increase herbage production within the
constraints of reducing chemical N fertiliser inputs. Using available technologies and achieving grazing management
targets will be critical to meeting these challenges. PastureBase Ireland may in the future develop as a European
grassland database.
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Introduction

The Upper Syr Darya Basin is a critical agricultural region in Central Asia that depends heavily on the Syr Darya River for
irrigation, particularly for water-intensive crops such as cotton. Increasing and, at times, excessive pressure on water
resources has led to severe shortages, inefficient practices, and widespread water insecurity, as dramatically
demonstrated by the environmental collapse and near disappearance of the Aral Sea (Berdimbetov et al., 2020; Gupta,
2020; Hoekstra, 2020; Loodin, 2020). Despite formal transboundary agreements governing water allocation among
riparian nations, effective cooperation at multiple governance levels remains highly constrained (Abdolvand et al., 2015).
This lack of collaboration hampers data sharing, impedes evidence-based decision-making, and undermines policy
development (De Keyser et al., 2023). As agriculture accounts for approximately 90% of total water withdrawals in the
region, precise spatial quantification of the crop water footprint, distinguishing between green (rainfed) and blue
(irrigated) water use is essential for informed water-resource management. This study aims to quantify the crop water
footprint, analyze interannual variability, and identify hotspot areas to support policy interventions.

Materials and Methods

The ACEA crop water productivity model, developed by Mialyk et al. (2022), is implemented in Upper Syr Darya Basin at
an enhanced spatial resolution of 5 arc-minutes for the period 2000-2019. ACEA is based on AquaCrop-OSPy v6.1, which
mimics the daily crop growth and vertical soil water balance. The model distinguishes, green and blue from capillary rise,
and irrigation, enabling precise green-blue water accounting throughout the crop growing season. The model input
datasets like climate forcings, CO2 concentration, groundwater table, and crop-specific parameters were consistent with
the original setup. The soil layer was updated in the model with Soil Grids data version 2.0 (Poggio et al., 2021) to improve
the spatial resolution of soil layer. Model outputs are analysed for the historical period 2000-2019 to capture interannual
variability and spatial patterns in crop water use and also computed at the monthly scale.

Results and Discussion

Spatially explicit maps of crop water footprint are expected to reveal significant variation in blue water consumption,
especially in cotton irrigation systems across the Upper Syr Darya Basin. The ACEA implementation is anticipated to
provide quantitative separation of consumptive green and blue water footprints at high spatial resolution. This capability
will help identify areas of inefficient water use and support the development of scenarios to improve irrigation efficiency.

Conclusions

Regional ACEA modeling provides a robust framework to address critical data gaps in quantifying consumptive crop
water footprints at high spatial and temporal resolution in the Upper Syr Darya Basin. The process-based approach
enables accurate separation of green and blue water consumption components, essential for developing targeted water
conservation strategies in this water-scarce region. Results will provide essential insights to optimize water allocation,
improve irrigation management efficiency, and guide sustainable agriculture practices, contributing to regional water
security.
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Introduction

CHN, a crop model developed by Arvalis, simulates daily crop state and its growth forecast at field level. One of the main
uses of its outputs is to manage nitrogen fertilization on winter wheat. It is coupled with Sentinel 2 data (Piquemal et
al., 2020) and the repeated satellite acquisitions estimate regularly Leaf Area Index and Nitrogen Content, variables used
to confirm or correct model simulations during the cropping season.

Deployed at large scale, CHN in certain plots can simulate a wrong estimation of soil nitrogen (SN) stock, variable which
play a key role in building nitrogen input advice. The best proxy indicator to identify fields with a wrong estimation of SN
stock is the difference between plant nitrogen quantity simulated by CHN and the one measured using satellite data
(=AQNf) at flowering stage (last date of nitrogen input management). If AQNf exceeds 20 kgN ha™ on a field, SN stock
needs to be adjusted.

The aim of this study is to build and evaluate a method to predict AQNf with indicators calculated at early stages in
winter wheat cycle. In campaign, it will be used to flag fields that need SN stock adjustment.

Materials and Methods

259 fields of different trials network located in France are used. They cover all metropolitan area from 2020 to 2024. For
each field, we get back CHN outputs with or without using Sentinel 2 data in the model, calculate AQNf at flowering
stage and tag fields that need SN stock adjustment.

Many indicators describing the discrepancy between model output and sensor data are calculated at three dates in the
beginning of crop cycle (for instance, the difference between biomass simulated by CHN and the one calculated with
sensor data). Regression trees using CART (Breiman et al., 1984) are built on these predictors to identify thresholds that
can separate tagged fields from the others.

Results and Discussion

Table 1 presents the performance on an independent dataset of previous indicators to flag fields with high AQNf at
flowering stage. Indicators detect 76% of all fields tagged. Nonetheless, some tagged fields are still non detected, and
12 non-tagged fields are detected. This can be linked to low satellite coverage, bad quality acquisitions or specific
environmental conditions on these fields.

Tagged fields (AQNf > 20 kg N ha) Non-tagged fields (AQNf < 20 kg N ha)
Positive Detection 53 12
Negative Detection 16 15

Table 1. Confusion matrix of the indicators used to predict fields which need SN stock adjustment (= tagged fields)
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Conclusions

The detection method developed shows great performances to identify fields that need SN stock adjustment.
Nevertheless, it is mainly dependent of the coverage and quality of satellite data, especially around the dates used for
prediction. Despite the high number of years considered in the study, the question of the stability of indicators and
associated threshold from one year to another can be limiting, particularly in case of year with atypic environmental
conditions.
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Abstract

Crop models integrate diverse datasets; weather, soil properties, crop genetics, and management
practices - to predict outcomes such as biomass accumulation, phenological stages, and final yields.
They enable scenario testing without the high costs of repeated field trials and allow lessons to be
transferred across environments. However, in sub-Saharan Africa (SSA), modelling efforts are
constrained by data scarcity. This review assesses progress on the use of crop modelling in decision-
making and innovation in SSA, highlights persistent challenges, and outlines areas for improvement.
Evidence suggests that the limited availability of reliable historical data, particularly at the required
temporal resolution, is a key barrier. Moreover, uncertainties in model calibration, climate
projections, and management assumptions further limit the reliability of future yield predictions.

Key words: complexity, model coupling, data sources, soil variability, future management

1. Introduction

Crop modeling has high potential to play a crucial role in modernizing agriculture, enabling science
based and data-driven decision-making and enabling innovation (Boote et al. 2017; Corbeels et al.
2018). Crop modelling involves the use of mathematical and computational simulations to
represent crop growth, development, and yield under varying environmental, genetic, and
management conditions. These Crop models are broadly classified into empirical (statistical
relationships) and process-based (mechanistic, simulating physiological processes) types. By
functioning as virtual laboratories, they allow researchers, policymakers, and farmers to explore
scenarios and optimize management strategies without costly or time-intensive field trials. In this
paper, | highlight four major areas that need attention for improve model use in decision making
and innovation in Africa.

2. Challenges of model application in SSA

2.1 Abstraction vs. complexity: Most models are an abstraction because they are simplified,
incomplete representations of complex reality, focusing on specific features while ignoring others
to achieve a particular goal or gain understanding. However, SSA has very diverse socio-ecological
conditions. This diversity is underpinned by a combination of biophysical factors such as soils and
climate, socioeconomic factors such resource ownership and access capital and markets as well as
farmers’ production orientation (production for cash vs. sustenance). Soil degradation and
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unpredictable rainfall synergistically constrain food production and the viability of smallholder
agriculture in SSA, where 90% of main crop production is under rain-fed conditions. The wide
variability of soil and rainfall precludes the widespread use of crop models for decision making and
innovation (Challinor et al. 2018).

2.2 Data limitation: Data limitations for crop modeling in Africa stem from a combination of
infrastructural, economic, and environmental challenges. Many African regions lack robust data
collection systems, with limited weather stations, soil sensors, and satellite coverage providing
inconsistent or incomplete data on climate, soil properties, and crop performance (Silva and Giller
2021). Financial constraints and underfunded agricultural research institutions hinder the
development and maintenance of comprehensive databases. Additionally, the diversity of
smallholder farming systems, coupled with varied agroecological zones, makes standardized data
collection difficult. Political instability and poor coordination among governments, NGOs, and
research bodies further exacerbate gaps in data sharing and accessibility, limiting the accuracy and
applicability of crop models for improving agricultural outcomes.

2.3 Model coupling: Corbeels et al. (2018) assessed the reliability of coupling climate model
projections with process-based crop growth models to assess climate change impacts on crop yields
and inform specific management-level adaptation strategies. They reported significant uncertainties
in such approaches, particularly from global circulation models (GCMs), which are combined with
uncertain future management regimes and argued for a more cautious application. Selection of the
correct crop model and GCM combination is critical to obtain realistic and reliable results. The use
of GCMs in Africa is unreliable due to the coarse spatial resolution and limiting their use in coupling
with crop models for climate change prediction (Tanimu et al. 2024)

2.4 Science of translation: A persistent challenge is bridging the gap between model outputs and
practical decision-support tools. Participatory modelling, where farmers and other stakeholders are
directly involved in the calibration and validation process, is essential for building trust, improving
adoption, and ensuring that models generate actionable insights

3. Conclusions

Crop models offer powerful tools for simulating the complex interactions between crops,
environments, and management practices. They can guide resource optimization, risk mitigation,
and the design of sustainable farming systems. However, in SSA, their potential remains
underutilized due to ecological heterogeneity, data scarcity, and the uncertainties inherent in
climate—crop coupling. Moving forward, investments are urgently needed in (i) developing models
tailored to SSA conditions, (ii) improving GCM resolution and downscaling, (iii) strengthening soil
and crop data collection systems, and (iv) embedding participatory approaches to ensure outputs
translate into locally relevant, actionable decisions.
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Introduction

Blanket fertilizer guidelines often misallocate inputs across heterogeneous soils and climates, depressing profitability
(Murphy et al., 2024). We aimed to develop and rigorously vet a support-aware, site-specific N-P,0s—K,0
recommendation policy learned entirely from historical data, targeting higher expected profit while remaining within
empirically supported practice.

Materials and Methods

We used a multi-year agronomic dataset from on-farm maize trials in Chiapas (2012—-2018; 4,585 field-seasons) with
yield, management (N, P,Os, K;0), soil, topography, and weather features (Trevisan et al., 2022). Yields span 0.1-10.0
Mg ha™, reflecting high variability typical of smallholder systems.

We trained a stacked surrogate reward model (XGBoost, LightGBM, CatBoost; Ridge meta-learner) using grouped cross
validation (CV) by geo-clusters and train-only adaptive action binning to mirror off-policy support.

Policy learning followed a contextual-bandit framing with conservative constraints (ensuring support coverage and
utilizing baseline-mixing) to avoid extrapolation beyond observed fertilizer regimes.

Evaluation used a conservative off-policy protocol based on self-normalized doubly robust (SNDR) estimators with
cluster-bootstrap confidence intervals and multiple validity gates (mass-in-support 20.95, overlap = 95% with mo(a) 2
0.1, acceptable weight distribution/ESS, and uplift lower confidence bound (LCB) > 0), rejecting any year that failed a
gate.

Results and Discussion

The surrogate achieved out-of-fold R? = 0.59-0.62 with RMSE = 1.20-1.26 t ha™" in most recent years (2016—-2018),
indicating strong predictive skill for noisy agronomic outcomes; 2015 was an expected outlier (R? < 0).

The joint propensity model over 36 N-P,0s—K,0 cells was well-calibrated (Test ECE = 0.020) with broad action-space
coverage (34/36 cells observed; 28 cells 210 samples), supporting reliable weighting.

Applying the conservative OPE gates, five of six evaluation years (2013, 2014, 2016, 2017, 2018) showed statistically
significant profit gains over baseline; 2015 failed due to a negative uplift LCB and was rejected. Averaging across
accepted years, we achieve a mean profit uplift of ~+5.9%.

To translate these findings into practice, we built a bilingual web app that operationalizes this winning policy: users
enter field conditions, and the app recommends optimal N-P,0s—K-0 rates, with appropriate guardrails. This
implementation demonstrates how conservative, offline-validated policies can be delivered in an interpretable tool for
smallholders and extension partners, directly linking our causal ML results to actionable advice.
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# Get Recommendation

B Recommendation Generated

B Recommended Fertilizer Rates

Nitrogen (N) Phosphorus (P,05) Potassium (K,0) Expected Yield

749 kg/ha 0.2 kg/ha 12.9kg/ha 3,555 kg/ha

OkE ba aseline

B8 Predicted Improvements vs Baseline

Predicted Yield Gain: +30 kg/ha Predicted Profit Gain: +1,620 MXN/ha

This is a model-based prediction comparing the This is the predicted increase in net profit (revenue
recommended action (75-0-13) to the typical baseline minus fertilizer cost) compared to the baseline action,
action (155-20-13) for your conditions. based on current prices.

Figure 1. Screenshot of example recommendation in app

Conclusions

Our offline contextual-bandit policy trained on CIMMYT’s Chiapas dataset using conservative causal machine learning
(ML) methods yields consistent, statistically-validated profit improvements in historical evaluation while honoring strict
safety constraints. This offers a practical pathway to deliver site-specific fertilizer advice to smallholders — improving
profitability without recommending untested doses — ready for cautious pilot deployment.

Acknowledgements

We thank the farmers and extension partners in Chiapas who contributed to the multi-year on-farm dataset, and the International Maize and Wheat
Improvement Center (CIMMYT) for open data access.

References:

Murphy, K., Rudder, J., Cappucci, M., Cherian, M., Deutschmann, J., Elmera, C., Fundukova, L., Kaiser-Tedesco, A., Ortiz-Riomalo, A., Puri, J., Salas, I.,
& Songsermsawas, T. (2024, October). Evidence review for food security, nutrition, and climate-resilience interventions.

Trevisan, R. G. et al. (2022, January). Multiyear maize management dataset collected in Chiapas, Mexico. Data in Brief, 40, 107837.

Py

ICROPM




Crop Modelling for Agricolture

Combining crop modeling and high-resolution data for enviromics to detect high performing and
stable cultivars
Honvault Nicolas*!, Lange Bastien®, Bicard Maeva?, Mignot Etienne?, Faucon Michel-Pierret

1UnilLaSalle, AGHYLE, UP.2018.C101, FR-60026 Beauvais, France, nicolas.honvault@unilasalle.fr

2VIVESCIA, FR-51100 Reims, France

Keywords: Crop modeling; Genotype environment interactions; Ecophysiology; Environmental covariates;
Envirotyping ; Partial least square regression.

Introduction

The identification of high yielding cultivars performing consistently under heterogeneous soil and climate contexts
constitutes a major challenge for the resilience of agricultural systems. Understanding the substantial intra and inter-
annual yield variations largely observed across cereal and oilseed crops requires to decipher the environmental factors
driving yields and Genotype x Environment Interactions (GEI) for yield (Fekadu et al., 2023; Han et al., 2023). Cropping
models combined with emerging approaches characterizing environmental factors and their contribution to GEI can
enhance our understanding of the main drivers of GEl within each agricultural territory. Such approaches would enhance
varietal recommendations while contributing to a better understanding of cultivar adaptations.

Materials and Methods

To unravel the main factors driving yield as well as GEI and highlight high performing stable genotypes we adapted an
approach combining high resolution climatic and pedological data and crop modelling (Bicard et al., 2025; Corlouer et
al., 2024; Le Roux et al., 2024). Simulated and observed phenological stages were employed to calculate a wide range of
environmental covariates among which critical drivers were selected. To understand diverging and converging patterns
of adaptation to increasingly unstable climatic conditions among major crops and support consistent yields at regional
level three majors crops with contrasted crop cycles were examined: winter wheat, spring barley and winter rapeseed.
Partial least square regression was employed for unbiased selection among often correlated environmental covariates
based on a regional varietal trial dataset with 13 to 31 environments and 7 genotypes per species. Patterns among critical
environmental covariates driving GEI and their occurrence were further characterized at regional level (Bicard et al.,
2025). Finally, genotype yield performance and static and dynamic stability were analyzed via several approaches such
as the additive main effects and multiplicative interaction model and the genotype plus genotype-by-environment biplot
along with performance and stability indices, notably based on environmental clustering.

Results and Discussion

Important GEI were observed within the regional trial network, with interactions between proposed environmental
clusters and genotypes having similar or superior effects on yield compared to genotypic main effects. Higher GEI were
observed for wheat and rapeseed than for spring barley for which the genetic pool is more limited. Contrasted critical
environmental covariates were selected for the three main crops with varied cropping cycles examined, with several
pedological factors retained as key drivers of GEI. Environmental clustering underlined high variability of environments
within the Northeastern region of France analyzed with cluster occurrences over 10 years often close to 30%. We
observed variations in how genotypes adapt to changing conditions with different profiles with regards to yield
performance and consistency. For high performing genotypes, our results reinforce tradeoffs between yield performance
and stability. Nonetheless, optimal genotypes with good yield performance and high stability indices were highlighted.
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Figure 1: Workflow and outputs of the approach developed

Conclusions

The approach developed allowed to improve knowledge of critical environmental factors driving yield performance and
GEl for yield of three important crops at regional level. Even at the regional level and with the limited number of repeated
genotypes in the agricultural cooperative trial network analyzed our results underlined large influence of GEl
emphasizing the challenges in identifying and deploying high yielding cultivars performing consistently. Critical
environmental covariates estimation via crop modelling and high resolution pedoclimatic data could support further
explorations of future climate scenarios under climate change and their consequences for genotype performance and
stability. The genotypes with high yield stability and medium to high performance highlighted could contribute to
stabilizing production in already variable and increasingly heterogenous conditions. The approach developed could
contribute to varietal recommendations for farmers while deepening our understanding of genetic resources to better
guide breeding strategies.
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Introduction

Climate variability and unpredictable extreme weather events have led to disruptions in food production and increases
in market prices. The food crises of the 2000s and 2010s, triggered by extreme weather events, underscore the need for
swift, timely, and accurate decisions in agricultural production. Therefore, timely and accurate yield and production
forecasting is becoming increasingly vital for informed crop management and financial decision-making.

When producers have earlier access to seasonal climate forecasts during the growing season, they can implement more
effective management practices to optimize their yields. By utilizing accurate seasonal climate forecasts, in-season yield
forecasting enables decision-makers to plan early and estimate production levels and related market prices. The goal of
this study was to evaluate the capabilities of the CRAFT spatial in-season yield forecasting system for effective risk
management in response to climate uncertainties.

Materials and Methods

Gridded simulations using the Decision Support System for Agrotechnology Transfer (DSSAT) and the CCAFS Regional
Agricultural Forecasting Toolbox (CRAFT) were used as a method. The DSSAT is a software application that comprises
crop simulation models for over 42 crops, as well as tools to facilitate the effective use of these models (Hoogenboom
et al, 2024). To obtain regional and nationwide spatial results, the CRAFT was developed and integrated with DSSAT,
which allows field-level simulations. CRAFT is a multi-scale and multi-model gridded framework for forecasting crop
production, risk analysis, and climate change impact studies (Shelia et al., 2019; Tesfaye et al., 2023). CRAFT enables spatial
yield predictions to be obtained at a five-arcmin resolution using local weather, soil, and crop management data. Wheat,
which is widely cultivated across Tirkiye, was selected for the study. Areal crop production and crop mask data were
obtained from IFPRI’s Spatial Allocation Model (SPAM) for 2020 Version 2.0 (IFPRI, 2024). Daily historical weather data
were obtained via the NASA POWER web portal in CRAFT version 4.0. The SOILGRID and WISE soil profile databases
provided by DSSAT were used for the Tiirkiye domain.

Results and Discussion

In this study, the CRAFT model was initially calibrated using wheat yield data from the period 2011 to 2023. In the second
stage, SST parameter data sets were utilized for forecasting in-season spatial yields for 2024. The Climate Predictability
Tool (CPT) (Simon et al., 2025) within the CRAFT model was used to download Sea Surface Temperature (SST) data sets
for the region surrounding Tirkiye, covering the months of March, April, and May—just prior to the wheat harvest
season in the country. Using SST data as a predictor with the CRAFT tool resulted in a 2024 spatial wheat yield estimate
with approximately 90% consistency.
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Figure 1. Spatial wheat yield forecast with 3 months prior to harvest time for Turkiye in 2024

Conclusions

The study showed that the CRAFT tool effectively estimate in-season wheat yields across the Tirkiye domain area. To
improve the accuracy of in-season yield predictions, it is advisable to analyze SST data from various regions that could
influence the study area, in addition to examining the specific SST dataset used in the research. Furthermore,
incorporating parameters such as precipitation is also recommended. The CRAFT tool can serve as a valuable resource
for decision-makers in generating yield estimates prior to final harvest for the current growing season.
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Abstract

Australia’s sorghum growers face mounting pressures from climate variability, shifting markets, and production risks,
underscoring the need for tools that can reduce uncertainty in pre-sowing decisions. Cultivar and management choices
are especially challenging when future climate conditions and initial soil water status are unknown.

We present a prototype decision support framework that integrates seasonal forecasts from ECMWF global circulation
models, Sentinel-1 and Sentinel-2 earth observation datasets, and the APSIM crop model into a user-driven platform.
Machine learning methods convert remote sensing data into estimates of starting soil water, reducing reliance on
sparse climate station networks. These inputs drive APSIM simulations that explicitly evaluate the interactions
between genotype (cultivar choice), environment (forecast climate and soil moisture), and management (sowing date,
fertilisation, row configuration). This GXxExM framing enables users to benchmark alternative strategies under realistic
site and season specific conditions, translating model complexity into practical decision points.

A key innovation is the platform’s spatial capability: satellite imagery allows field-scale variability to be incorporated
into crop simulations, enabling detection of zones with higher or lower production potential. This supports precision
agriculture by guiding input targeting, while also identifying high-risk scenarios—where crop failure is likely—as well as
situations where yield potential is under-realised. Together, these insights allow growers to actively manage both
climate risks and opportunity gaps.

Still at prototype stage, the system is undergoing advisor feedback, informing an interface that balances usability with
modelling sophistication. Early applications suggest the framework narrows decision spaces, sharpens risk awareness,
and enhances climate resilience in sorghum systems. This work demonstrates how integrating forecasts, earth
observations, and APSIM through a GxExM lens can generate actionable tools for decision-focused crop modelling.
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Frequent flyer: UAV-based crop model calibration
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Introduction

The combination of climate change and stricter environmental regulations will lead to the increased exposure of potato
(Solanum tuberosum spp.) crops to drought and nitrogen stress in the Netherlands. Gaining a better understanding of
the response of potato to the combination of both stressors, and the resulting effect on tuber yield, will facilitate
adaptation via improved plant breeding and crop management. Crop growth models are an important tool for
understanding the interaction between genotype, environment, and management (Tardieu et al., 2018). However,
insights remain limited due to the need for genotype-specific parameterisation (ten Den et al., 2022). Combining model
calibration (MC) with high-throughput phenotyping shows promise for generating the required parameter sets (Huang
et al., 2023). In particular, the development of low-cost UAV-based sensors (RS) offers the potential for high-frequency
and high-resolution time-series data for small-plot trials. Yet, the performance and data requirements of calibration
methods remain unclear. We aim to identify suitable calibration methods, input traits, and number and timing of
observations for generating genotype-specific model parameter sets.

Materials and Methods

In the context of the CropXR programme?, large-scale field experiments were conducted in two locations in the
Netherlands in 2024 and 2025. The treatment factors included irrigation, nitrogen (N), and genotype. True colour,
multispectral, and thermal-infrared images were collected weekly from emergence until haulm-killing and processed
into “off-the-shelf” traits (e.g., RS-LAI) by a commercial company. There were four (2024) and five (2025) harvests to
measure biomass, leaf area, and tissue N-content. WOFOST 8.1 will be used for a model-based analysis of stress-
tolerance traits following calibration.

Research Approach

A review of WOFOST state variables and available literature identified leaf area index (LAI), nitrogen nutrition index
(NNI), crop water stress index (CWSI), and final tuber dry matter yield as potential observations to use for MC. However,
exploratory analysis shows only medium predictive ability of RS-LAI, and no “off-the-shelf” products are available for
NNI and CWSI. Preliminary results (figure 1) show that combining RS-traits can improve LAl prediction.

Once LAI, NNI, and CWSI prediction methods are established, a sensitivity analysis will be used to determine WOFOST-
parameters to be calibrated under optimal, drought-, and nitrogen-stressed conditions. The ‘24/'25 data will be used to
develop the main calibration pipeline and determine Bayesian calibration’s data requirements in terms of observation
type (LAI, NNI, CWSI, yield), and number and timing of observations. Additionally, we will explore if the inclusion of
hierarchical relationship (e.g., location, year, and genotype) improves parameter uncertainty and yield prediction. After

1 www.cropxr.org
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applying the developed pipeline to the 200 genotypes of the ‘26/'27 experiments, the calibrated model will be used to
identify drought- and nitrogen-stress tolerance strategies and their trade-offs under optimal conditions.

N W &, OO0 O N O ©

Measured Leaf Area Index

Fitted Leaf Area Index

Figure 1. Fitted versus measured leaf area index for a preliminary model using Simple Ratio and Maximum Canopy Height to predict LAI. Different
harvest moments are highlighted (red, green, blue, and purple, respectively, for harvests one to four) and the red line indicates the line of equality
(v =x).

Acknowledgements

This project is part of the research program of the CropXR Institute which is financed by the National Growth Fund (NGF) of the Netherlands.

References:
Huang et al. (2023). IEEE Trans Geosci Remote Sens, 61. DOI:10.1109/TGRS.2023.3259742

Tardieu et al. (2018). Annu Rev Plant Biol, 69. DOI:10.1146/annurev-arplant-042817-040218

Ten Den et al. (2022). Eur J Agron, 137. DOI:10.1016/j.eja.2022.126510

FLORENCE " . 233

ICROPM ::
~.2026; '




Crop Modelling for Agricolture
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Introduction

OliveCan (Lépez-Bernal et al., 2018) is a process-based model that simulates olive oil production under varying climatic
and water conditions. It has been applied to assess the impacts of climate change on olive production across Europe
(Mairech et al., 2021) and to evaluate cover crop effects on orchard water balance and yield (Lépez-Bernal et al., 2022).
OliveCan belongs to the family of mechanistic crop models, i.e. those with a strong biophysical basis (Garcia-Tejera et
al., 2024). Such models improve our understanding of crop—environment interactions and physiology but require
extensive parameterization and are computationally demanding (Boote et al., 1996; Passioura, 1996). In its current
form, OliveCan is therefore unsuitable for large-scale, real-time applications. To overcome this, we developed OliveCan-
Lite, a streamlined version that reduces simulation time while retaining its biophysical foundation.

Two main simplifications were introduced in OliveCan. First, the canopy is assumed to be perfectly coupled to the
atmosphere (Villalobos et al., 2000), i.e. leaf temperature follows air temperature and transpiration depends mainly on
stomatal conductance. Second, water stress effects are modelled applying Ritchie (1985) conceptual model, instead of
solving equilibrium between leaf water potential and stomatal conductance (Garcia-Tejera et al., 2017). These changes
allow analytical solutions for transpiration, reducing computation time. The objective was to evaluate OliveCan-Lite
adaptations against experimental yield data.

Materials and Methods

Model performance was tested with data from an orchard experiment in Cérdoba, Spain (Iniesta et al., 2009), also used
in previous OliveCan assessments (Lépez-Bernal et al., 2018). The trial was conducted from 2004 to 2006 at the Alameda
del Obispo Research Station (37.8°N, 4.8°W, 110 m a.s.l.) with ‘Arbequina’ trees spaced 7 x 3.5 m. The soil wasa 2 m
sandy loam, with water contents at field capacity and wilting point of 0.23 and 0.07 m3® m=3, respectively (Testi et al.,
2004). Weather data were collected from a station 500 m from the orchard. Three irrigation regimes were tested, but
only two were simulated: (i) control (C), fully replacing ET demand, and (ii) continuous deficit irrigation (CDI), supplying
25% of C. Regulated deficit irrigation could not be simulated, as OliveCan-Lite does not yet allow irrigation scheduling
by date.

Results and Discussion

Simulation time was reduced from 1 minute with OliveCan to 5 seconds with OliveCan-Lite. This efficiency gain did not
compromise accuracy, as preliminary results show good agreement between observed and simulated yields under both
irrigation regimes (Figure 1). However, significant discrepancies occurred in 2005, an “off” year with low crop load. This
suggests that alternate bearing, a key feature of olive production, is still insufficiently represented and requires further
model refinement.
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Figure 1. Oil yield comparison between simulated and experimetal data for the Control and the Continuous Deficit Irrigation treatments

Conclusions

OliveCan-Lite represents a first step toward an efficient, large-scale olive oil yield forecasting tool. It maintains the
biophysical foundation of OliveCan while achieving a 12-fold reduction in runtime. Further improvements are needed,
particularly in simulating alternate bearing, to enhance its predictive capacity across diverse European regions.
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Introduction

Critical nitrogen dilution curves (CNDCs) are widely used to diagnose the nitrogen nutritional status of crops by
estimating the Nitrogen Nutrition Index (NNI) (Justes et al., 1994; Lemaire et al., 2019), which informs fertilization
decisions. CNDCs, by design, imply maximum biomass accumulation when NNI = 1, and in most cases, also maximum
grain yield. Several studies confirm that maintaining an NNI close to 1 during stem elongation maximizes grain yield
(Hoogmoed et al., 2018; Lemaire et al., 2008), while lower values are favorable before stem elongation (Ravier et al.,
2017). In-season decision support systems (DSSs) for diagnosing nitrogen needs enable better synchronization of
nitrogen demand and supply, reducing losses and maximizing profit. In situ sampling combined with remote sensing and
simple models can be scaled to large areas using management practice information readily available from farmers and
limited field data, as these are key factors in facilitating farmer adoption. This study explores a novel application of the
CNDC by proposing the use of the analogous critical nitrogen absorption curve (Lemaire et al., 2008) to forecast future
nitrogen demand, thus enabling in-season estimation of crop nitrogen requirements through an in-season nitrogen mass
balance and the estimation of future biomass accumulation. Rather than diagnosing the current nitrogen nutritional
status, this prognostic approach predicts future nitrogen needs based on the crop’s expected capacity for biomass
accumulation, which can be estimated with greater accuracy than nitrogen needs directly.

Materials and Methods

The Optifert-N DSS is based on an in-season nitrogen mass balance that incorporates several components to estimate a
recommended nitrogen rate (Nrec, kg ha™) to be applied: residual soil nitrogen from previous fertilization (Nres, kg ha™),
projected future nitrogen demand (Ngem, kg ha™), observed accumulated biomass and nitrogen in the crop (Wobs, Mg
ha™; Uops, kg ha™"), and estimated nitrogen mineralization (Nmin, kg ha™, defined as the nitrogen captured by a zero-N
plot, which should be site-specific) (Figure 1). The function GRf(NNIops) is an empirical relationship derived from observed
data, relating the daily growth rate to the NNI in a quadratic-plateau form; however, it can be replaced by any function
capable of predicting future crop growth (e.g., derived from remote sensing). NNIoy; represents the target NNI, typically
set to 1 at anthesis. This procedure can be applied between the jointing and booting stages of wheat development to
determine an in-season top-dress fertilization rate.
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Figure 1. Conceptual diagram and equations of the DSS. With Ef=0.6, Ef\=0.5, a=53.5, b=0.442. Nsoiz0, Nfertz0, N fert z22and Nrertz30 are the initial soil
nitrogen content at planting (0-60cm depth in kg ha''), and rates of fertilizer aplcation at planting, Zadoks 22 and 30 respectivelly if aplied.

Results and Discussion

To validate the model, a set of nitrogen response experiments (n = 20) conducted between 2018 and 2020 at INIA La
Estanzuela was used. The model was used to determine the recommended nitrogen rate (N, kg ha™) at Zadoks 30
(jointing) through destructive biomass sampling. Estimated biomass at the end of vegetative growth (Zadoks 65) (Figure
2, left) ranged from 4 to 16 Mg ha™, with a root mean square error (RMSE) of 2.3 Mg ha™. Plots receiving lower nitrogen
rates exhibited lower biomass accumulation (blue) compared to those receiving higher rates (green). To evaluate overall
performance and account for residual nitrogen from previous applications, the total nitrogen applied (N + previous
applications) for each treatment was compared to the site-specific economic optimum nitrogen rate (EONR). The DSS
performed well in two out of three years, with an RMSE of 51 kg ha™" and a tendency to underestimate (false lows) rather
than overestimate (false highs) nitrogen rate recommendations, likely due to overestimation of nitrogen use efficiencies
(Efr, Efv) in years with extreme climatic events.
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Figure 2. Observed vs estimated biomass (W+AW) as estimated by the biomass prediction model (color scale green-yellow-blue form higher to
lower N rates respectively) . Biomas estimation (left) and validation of DSS as compared to economic optimum nitrogen rate (EONR) at sites with
nitrogen response experiments in three years (right).

Conclusions

Using the critical nitrogen uptake curve to estimate nitrogen demand proved a promising strategy for determining in-
season nitrogen applications, enabling the development of simple models that can be integrated into more complex
DSSs. The approach achieved a reasonable RMSE and was effective in: 1) avoiding falsely high application rates, 2)
reducing nitrogen rates when crop response is limited due to poor crop status at the time of sampling or limited capacity
for future growth, and 3) recommending high rates when necessary.
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Introduction

Ensuring food security under climate change and resource constraints requires tools for sustainable intensification of
cereal production. The global population, projected to reach 9.7 billion by 2050, will raise food demand by almost 60%
(FAO, 2022). Conventional systems based on intensive inputs and uniform practices are insufficient to meet these
challenges while preserving sustainability (Casa & Pisante, 2024). Precision agriculture, integrating remote sensing and
crop models, offers a pathway to enhance input efficiency and reduce environmental impacts (Cammarano et al., 2023).

Process-based models such as the Decision Support System for Agrotechnology Transfer (DSSAT) simulate crop—
environment—management interactions and support decision-making from field to regional scale (Jones et al., 2003;
Hoogenboom et al., 2019). Their reliability depends on calibration and assimilation: calibration aligns parameters to local
cultivars and conditions, while assimilation corrects model states with external observations, enabling dynamic and
spatially explicit yield prediction. Challenges remain, including data needs and calibration complexity, although advances
are improving accessibility and robustness (Holzworth et al., 2014; Cammarano et al., 2023).

This study focused on winter wheat (Triticum aestivum L.), the world’s most important cereal and a staple in
Mediterranean cropping systems, where rising temperatures already threaten production (Asseng et al., 2015). The
objective was to evaluate DSSAT performance in the Rieti plain (Central Italy), analyzing the effect of calibration and
assimilation of biophysical variables measurable via remote sensing.

Materials and Methods

Field trials were carried out in three farms of the Rieti plain (Italy) in 2023-2024, with ten 30x30 m plots across
contrasting soils. Phenology was recorded (BBCH), LAl measured with LI-3100C, biomass sampled by quadrats, dried and
weighed, while canopy N was determined by a portable near-infrared (NIR) spectrometer and grain yield from
harvesting. DSSAT v.4.8.2 was parameterized with local station weather data and regional soil maps supported by field
sampling. Calibration of cultivar and ecotype parameters was performed with CroptimizR using a Nelder—-Mead simplex
algorithm, testing assimilation of LAI, biomass, N, and their combinations.

Results and Discussion

Uncalibrated DSSAT failed to reproduce growth dynamics, underestimating LAl and misrepresenting biomass, resulting
in poor yield predictions (R? = 0.04). Assimilation under default settings improved correlations (R? = 0.71) but increased
RMSE. Manual calibration of cultivar and ecotype parameters improved model fidelity, especially for phenology and LAI.
When assimilation was applied post-calibration, accuracy improved: assimilating biomass reduced RMSE to 1.8-2.0 t
ha™ and raised R? above 0.5. Assimilation of LAl or nitrogen alone had limited benefits.
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Table 1. Observed yield versus simulated yields with and without assimilation.

Plots 1 2 3 4 5 6 7 8 9 10
HND 2.137 1.817 1.715 2.013 1.651 2.275 2.362 1.439 1.597 1.294
HN%D_def 1.633 1.149 1.373 1.305 1.289 1.237 1.197 1.275 1.312 1.112
HN%D_ass 3 1.813 2.489 1.442 2.241 1.445 1.386 1.842 1.872 1.426
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Figure 1. Comparison of yield (HWAD) before and after assimilation of LAI (LAID), aboveground biomass (CWAD), and canopy nitrogen (CNAD): on
the left a before assimilation, on the right after assimilation.

Conclusions

Combining calibration and data assimilation maximized the predictive power of DSSAT. Biomass proved to be the most
informative assimilated variable. The study shows that calibrated DSSAT supported by assimilation of remote-sensing
indicators can generate reliable yield maps and provide decision-support tools for fertilization, irrigation, and harvest
planning in Mediterranean wheat systems. The workflow is transferable to other contexts, contributing to resilience and
sustainability in global grain production.
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Introduction

Olive and olive oil production is a pillar of rural economies in the Mediterranean. The EU produces over 50% of global
olives and two-thirds of olive oil, mainly in Spain, Italy, Greece, and Portugal. Yet, inter-annual variability is high, driving
price volatility and uncertainty for stakeholders. Timely, accessible forecasts are essential to enhance market
transparency, avoid speculation and support decision-making. Within this context, the European Commission, through
the Joint Research Centre (JRC), has proposed including olive in the MARS Crop Yield Forecasting System (MCYFS). To
anticipate production outcomes, several approaches have been tested: in situ surveys, empirical models including
machine learning (Ramos et al., 2025), process-based models (Lopez-Bernal et al., 2018), and aerobiological modelling
(Oteros et al., 2014). Each offers advantages and limitations, underscoring the potential of hybrid approaches.

The proposed idealised Olive Yield Forecasting System (Figure 1) follows this path. The present work focuses on the
creation of region-specific and gridded datasets to characterise olive production and production systems in the EU's
main olive-producing countries. The resulting database is used to parameterise and test an adapted version of the
OliveCan model (OliveCan-Lite), which was specifically developed for being integrated into the MCYFS (Garcia-Tejera et
al., 2026).
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Figure 1. Olive Yield Forecasting System
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Materials and methods

To characterize olive production systems in Spain, Portugal, Italy, and Greece, information was collected from multiple
sources. Official statistics and reports from national ministries, regional administrations, and producer organizations
were combined with evidence from specialized literature and technical documentation. Data collection was carried out
at both NUTS3 and grid cell (10 x 10 km) levels, enabling the compilation of historical series together with spatially
explicit information. To capture the spatial dimension, parcel-level databases of olive orchards were combined with
remote sensing indices such as NDVI and SAVI.

Results and discussion

The characterization generated harmonised datasets at both geographic levels. At NUTS3 level, information includes
historical series of area, production, and yields, along with descriptors of orchard typologies, tree density, soil and terrain
attributes, irrigation practices, flowering and harvest dates, predominant cultivars, and main pests and diseases. Grid
cell level data provide information on the area of olive cultivation and tree canopy cover. These datasets support the
parameterisation of OliveCan-Lite and enable cross-country comparisons. Important challenges encountered include the
fragmentation of data across administrations (i.e., information dispersed across different levels of regional authorities),
the lack of up-to-date information on irrigated areas, and gaps in key variables in some regions (e.g., dates of critical
phenological stages and tree density), which had to be estimated through alternative procedures.

Conclusion
The creation of this harmonised database provides the foundation for the first regional-scale statistical models to

forecast olive yield and production in the EU's main olive producing countries. We believe that the database will also
find applications beyond this goal. After further testing and improvement, it will be made publicly available.
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Introduction:

Climate change is increasing the incidence of warmer and wetter conditions in Ireland (Nolan & Flanagan, 2020),
leading to an increase in fungal diseases, such as Crown Rust (Puccinia Coronata). Disease development is also more
likely as regulations reduce the nitrogen inputs allowed on grassland farms. The increased stress placed on growing
plants during times of soil moisture deficits and low nitrogen can promote fungal spread (Critchett, 1991). Diseases like
Crown Rust negatively impact herbage yield and quality, significantly affecting pasture productivity and nutritive
quality for grazing cattle (Carr, 1975). Diseases can be visually assessed as the reduction of green in the sward
(Kimbeng, 1999). However, disease monitoring can be laborious, and disease may only be noticed when large areas of
the sward are already infected. The use of technology driven disease detection could reduce associated labour inputs
and decline in sward quality and yield. The difference in greenness can be utilised to inform a decision support tool
(DST) that can monitor for disease incidence. The objective of this study was to detect disease incidence in PRG swards
using drone imagery, using greenness as a proxy.

Materials and Methods:

The study was carried out on 200 plots containing various perennial ryegrass (PRG, Lolium perenne) cultivars in
October 2024. Herbage samples were collected from each plot by cutting a 0.25m?area within a quadrat using
Gardenia hand shears to 4cm. 100g of each sample was oven dried at 90°C for further analysis. Herbage samples were
analysed using near infrared spectroscopy for estimation of dry matter digestibility (DMD), and other quality metrics.
Disease scoring was assessed visually on each plot by three independent scorers, by calculating the % of the plot
infected x % leaf area affected. Drone imagery was captured using a DJI Mavic Series 3 drone. Greenness was
quantified by calculating the number of green pixels out of the total area analysed. Statistical analysis was carried out
using RStudio and R version 4.4.1.

Results and Discussion:

Regression analysis showed that greenness had a significant negative association with disease score (p < 0.001) (Figure
1). Disease score explained ~65% of the variation observed for greenness (R?=0.647). This impact of disease alighs with
the expected reduction of green leaf area and increased dead tissue (Potter, 1987). A relationship was also observed
between disease score, greenness and quality traits. DMD was negatively associated with disease score, (R*=0.52, p <
0.001), and DMD was positively associated with greenness (R? = 0.66, p < 0.001). As disease incidence increased, DMD
decreased along with the level of greenness, suggesting that plant greenness can be used to detect disease. This
reduction in herbage quality with the incidence of disease can limit animal performance, particularly during autumn
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when grass growth is slowing (O’Donovan et al, 2016). The potential of drone derived imagery for the early detection
of disease in PRG could mitigate the negative impacts of disease in pasture-based systems.

Greenness vs Total Disease Score
0.15-

R?=0.647, p = 1.22e-46

Greenness
o
o
o

0.00-

0 25 50 75
Disease Score

Figure 2: Relationship between greenness and Disease Score. A significant negative linear relationship was observed (R? = 0.65, p < 0.001), with 95%
confidence intervals shown.

Conclusion:

The use of greenness derived from imagery has the potential to predict the presence of disease of PRG. As climate
induced temperatures increase along with reduced N inputs, monitoring swards for the presence of disease will
become more important. Identifying disease using drone imagery will be useful on grassland farms as a DST to reduce
the negative impacts of disease including reduction in herbage yield and quality.
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Giuliano Vitalil, R.Fortesz, J.M.O.Alvarez3, C.PFerraz?
1 University of Bologna, Bologna — IT 2 HEMAV, Barcelona — ES 3 AIMCRA, Valladolid - ES

Sugar beet (Beta vulgaris L.) is one of the most important sugar-producing crops. With more than 4 bha, it contributes
approximately 20% of the world’s sugar supply. The more, its cultivation is gaining interest in several countries, due the
high revenue, and an high sugar purity. Nonetheless sugar beet is in many countries an irrigated crop and the water
management may be a critical factor because of the high susceptibility to a range of foliar and root diseases that may
significantly compromise both yield and sugar content, most of them being strongly dependent on the level of humidity
— it means that watering could be a dangerous practice.

Inirrigation the use of models as Decision Support Systems to estimate water balance is a common practice for decades,
but the huge number of parameters make their estimate of water availability not reliable on a large scale - soil maps and
weather forecast cannot give information with the due precision. Crop models have been recently embedded in Digital
Twins (DTs) where a data assimilation process allowing to progressively adjust parameters, initial conditions and forcing.
In this case the model AquacropOS (ver.6) has been rearranged in a Digital Twin architecture, able to work on nation-
wide soil maps and weather data, and using . NDVI and NDMI (from Sentinel-2) as proxy variables for cover crop and
stress coefficient respectively. New modules have been added to model root and sucrose dynamics.

Two sugar been grown fields have been considered for 2023 and 2024 in the central high-plane of Spain and irrigation
schedules from farmers have been monitored and compared to the ones suggested from the Digital Twin, putting in
evidence how the system may help to reduce to amount of water, refine the soil hydraulic parameterisation and weather
information.

In conclusion, DTs, a technology of growing interest in agricultural applications and services, may help to save water,
reduce the risk of yield loss but it also help in increase the spread of satellite data and the knowledge of soils and weather
distribution.
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Introduction

Oilseed rape (OSR; Brassica napus) is a globally important oil crop with potential to help narrow Egypt’s substantial
edible oil gap (Kheir et al., 2021). As Egypt’s agricultural sector is highly dependet on limited water resources, it is crucial
to identify cropping strategies that allow for water use effiecient OSR production. To support OSR’s introduction as a
novel crop in Egypt, reliable information on expected yields, irrigation requirements, and suitable sowing windows is
essential.

Process-based cropping sytems models (CSM) allow to explore the production potential of novel crops in specific target
environements. To provide robust simulation results a thorough calibration and evaluation of CSM is essential, building
on multi-environment field trial data (Attia et al, 2024; Shawon et al., 2024).

Materials and Methods

For this purpose, we conducted six independent field experiments, one in Germany and five across Egypt’s major agro-
climatic zones. Building on the detailed trial data on OSR phenology, growth, and yield formation we calibrated and
evaluated the CROPGRO model from DSSAT, previously adapted for OSR. We conducted a genotype-specific calibration
for the Egyptian OSR cultivar SERW4, which was grown in all six field experiments.

We subsequently applied the parameterized model to simulate OSR production across the five Egyptian sites. Using site-
specific soil and weather data, we assessed eight sowing dates between mid-September and beginning of January under
two irrigation strategies: (i) fixed schedules reflecting experimental practice, and (ii) automatic irrigation triggered by
plant available water thresholds over thirty years (1991-2020). Under automatic irrigation the soil profile was refilled
whenever plant available water in the top 30 cm fell below 50% of plant available water capcity. We investigated
simulated seed yield, applied irrigation, evapotranspiration, and both irrigation water use efficiency and evaporative
water use efficiency (WUE). We finally use mixed linear model analyses to assess differences between sowing dates and
irrigation strategies and identify optimal sowing windows for various production regions.

Results and Discussion

Model evaluation showed strong performance, with a d-index of 0.91-0.95 for phenology, biomass, and yield. Long-
term simulations indicated that all tested Egyptian sites are generally suitable for OSR production, with average yields
ranging from 1.9 to 3.1 Mg ha™ when sown at the location-specific optimum dates. Optimum sowing windows varied
geographically, from early October in the hotter southern sites to mid-November in the cooler northern regions. Notably,
water use efficiencies differed markedly among sites: southern locations required more irrigation, resulting in lower
irrigation WUE, whereas northern sites in the Nile delta showed higher irrigation WUE due to cooler conditions and soils
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with better water retention. Automatic irrigation consistently improved WUE compared to fixed schedules, though its
feasibility under Egyptian conditions remains constrained by technology and infrastructure requirements.
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Figure 1 Comparison of simulated and observed phenological development, growth, and yield of oilseed rape using the calibrated CROPGRO model.
Data from Edko, Nubariya, and Toshka were used for model calibration, while independent datasets from Shebin and Sadat were used for model
validation (see Table 1 for experimental details). Panels show simulated versus measured anthesis (a), maturity (b), and final seed yield (c) for
calibration (e) and validation (o) datasets against the 1:1 line, as well as biomass accumulation (d—e), leaf area index (f—g), and leaf appearance (h—
i). The results highlight the robustness of the model across diverse agro-climatic conditions in Egypt.

Conclusions

Our findings highlight regionally optimized sowing dates that realize high yields and water use efficiency at the same
time as a low-cost, climate-smart strategy supporting water use efficient OSR production in Egypt. The calibrated crop
model, integrating yield potentials and water use efficiencies, provides a valuable decision-support tool for policymakers
and farmers aiming to expand sustainable OSR cultivation in Egypt and other North African and semi arid regions.
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Introduction

Alfalfa (Medicago sativa L.) is among the most important forage crops worldwide, being valued for its high protein
content, digestibility, and suitability for ruminant nutrition (Testa et al., 2011). In Mediterranean irrigated systems, alfalfa
plays a strategic role as a rotation crop, contributing to soil fertility and providing high-quality feed for dairy chains.
However, its productivity is highly dependent on water availability and irrigation efficiency. Increasing climate variability,
combined with pressure on water resources, necessitates more sustainable and precise management strategies. The
integration of crop simulation models with remote sensing observations is an emerging approach to optimizing
management decisions (e.g., Deines et al., 2021). Remote sensing, particularly through freely available satellite platforms
such as Sentinel-2, provides timely and spatially explicit information on crop growth and stress. Crop simulation models,
on the other hand, provide insights into potential productivity under optimal conditions (e.g., Schils et al., 2018).
Combining these tools enables the identification of yield gaps and the factors that explain them, supporting decision-
making in precision agriculture. This study, conducted within the Sardinian PSR 16.1 ZOOTRACK project, aimed at testing
the integration of crop models and satellite-based vegetation indices for predicting alfalfa yield and quantifying yield
gaps in a Mediterranean plain environment.

Materials and Methods

The research was conducted in the Arborea district (Sardinia, Italy; 39.77°N, 8.61°E), an area reclaimed from the Sassu
Lagoon and characterized by intensive dairy farming and forage production. Nineteen alfalfa fields, ranging in size from
2 to 12 ha, were monitored over a total area of 140 ha. During the 2023—-2024 cropping season, data on yields were
collected at each of the three harvest events typically carried out for dehydrated forage production. Yields were
measured both as fresh biomass for dehydration and as dry matter (Mg ha™).

Multispectral data from the Sentinel-2 satellite were processed to obtain time-series of vegetation indices, including
NDVI, EVI, NDRE, and NDWI. To reduce noise, daily-smoothed curves were generated, and phenological parameters such
as the integral of the index curve and the maximum peak value were derived for each cutting cycle. These features were
then used as predictors in Random Forest models to estimate field-level yield. Model performance was assessed through
cross-validation, with evaluation metrics including root mean square deviation (RMSD) and Willmott (1982) index of
agreement (d).

In parallel, potential yields were simulated using the Decision Support System for Agrotechnology Transfer (DSSAT v4.8;
Hoogenboom et al., 2019) crop model under non-limiting water and nutrient conditions. The minimum dataset used for
model parametrization and calibration included daily meteorological data (solar radiation [MJ m™2 d™"], maximum and
minimum temperature [°C], rainfall [mm], wind speed [m s™], and relative humidity [%]), soil parameters (texture, field
capacity, wilting point, bulk density, cation exchange capacity, pH, nitrogen content, and organic matter), and agronomic
management information (timing and applied inputs).The comparison between simulated and observed yields allowed
for the calculation of yield gaps, which were spatialized across fields. Correlations between yield gaps and stress-related
indices, particularly NDWI, were tested to investigate the role of water availability.

ICROPM -




Crop Modelling for Agricolture

Results and Discussion

The Random Forest approach achieved satisfactory predictive performance, with an RMSD of 0.325 Mg ha™ of DM and
a high index of agreement (d = 0.83). Yield maps revealed high spatial variability both within and across fields. The
average annual yield across the 19 monitored fields was 5.55 Mg ha of DM. However, coefficients of variation were
consistently high (23% on average per cut), highlighting the heterogeneous response of alfalfa under the same
management conditions.

Observed (Figure 1A) yields (5.55 Mg ha* of DM) were on average 27% lower (Figure 1B) than simulated potential yields
(7.59 Mg ha™" of DM), with differences being highly significant (p < 0.0001). This result indicates a substantial yield gap
that cannot be attributed to genetic or climatic limitations, but rather to field-level management inefficiencies. Spatial
analysis further showed that yield gaps were significantly correlated (p < 0.001) with the NDWI water stress index (Figure
1C). This confirms that, despite being intensive in the Arborea district, irrigation practices are not always effective in

preventing water stress.

yield (Mg/ha of DM) yield gap (%)
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Figure 1. Alfalfa yield (A, Mg/ha of DM), yield gap (B, %), and correlation between the spatialised yield gap (%) and the cumulated Normalised
Difference Water Index (NDW!I). Data on A and B refer to the sum of the mowing events for dehydrated forage production

Conclusions

This study confirmed that alfalfa yield in Mediterranean irrigated systems can be effectively predicted using remote
sensing time-series combined with machine learning approaches. Yield gaps, quantified through the integration of
observed data and crop modeling, were primarily attributed to localized water stress resulting from irrigation
inefficiencies. The methodological framework tested here offers practical tools for farmers and advisors to improve
forage management. By generating spatial yield maps and diagnosing the causes of yield gaps, it is possible to design
targeted interventions, reduce resource waste, and enhance sustainability. These results contribute to advancing
precision agriculture in forage systems and support the resilience of Mediterranean dairy supply chains facing climate
and water challenges.
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Introduction

For several decades in France, nitrogen (N) fertilization reasoning has been based on the principle of the "balance sheet"
method. This method comes up against strong implementation limitations (Ravier et al., 2016), and a lack of adaptability
in the face of climatic hazards. This observation has motivated the emergence of a new concept of "integral
management” of N fertilization, which avoids a priori estimates of forecast N rate in favor of reasoning based on
instantaneous plant needs. Since 2017, ARVALIS has been developing an integral management tool of N fertilization in
wheat, FERTI-ADAPT CHN, which relies on a mechanistic crop model (CHN) to access plant N nutrition levels in real time
and forecast canopy N requirements. CHN allows to simulate the development, growth and N nutrition status of a wheat
crop on a daily basis in response to its environment using a dynamic approach. The innovative near-real-time coupling
of CHN with data from on-board satellite sensors provides an accurate diagnosis of wheat's N nutrition status, improving
the accuracy of crop N requirement projections. The fractioning of N inputs does not follow an a priori defined strategy,
in favor of a multi-criteria reasoning method that is more integrative of annual variability. The aim of this study is to
evaluate the agronomic performance of FERTI-ADAPT CHN under field conditions.

Materials and Methods

This study relies on a French network of 67 field trials of winter bread wheat (Triticum aestivum L.) conducted from 2021
to 2023. Nitrogen management based on the balance sheet method was compared with that based on the FERTI-ADAPT
CHN tool. Measurements of grain yield and grain protein concentration were performed at harvest to compare the two
practices. The total N rate applied in each treatment was also recorded. These data were used to calculate a nitrogen
net profit margin, incorporating several scenarios for N fertilizer prices (from 1.3 to 2.7 € kg N'1) and grain selling prices
(from 230 to 350 € t'). A remuneration scale for grain protein concentration was also used for this evaluation.

Results and Discussion

The tool's performance varies depending on environmental characteristics. When grain yield is constrained by factors
other than nitrogen, as observed during the growing season 2022, the tool makes it possible to limit the amount of
nitrogen applied to the crop without compromising its technical performance. Conversely, when the environment is
more favorable to production, FERTI-ADAPT CHN improves yield and grain protein concentration. For example, in 2023
(Fig. 1), compared with the balance sheet method, integral management of N fertilization significantly improved grain
yield by 0.25 t ha (p-value = 0.03) without increasing the nitrogen rate applied (-12.1 kg N ha?, p-value = 0.12) and
without penalizing grain protein concentration (+0.2 %, p-value = 0.23). Producing more grain with higher protein
concentration using less nitrogen fertilizer mechanically improves the nitrogen net profit margin. Depending on the
combination of fertilizer purchase price and grain selling price scenarios, the average gain ranges from 77 to 109 € ha.
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Figure 1. Comparison between agronomic performances obtained by the balance sheet method (reference) and a N management based on CHN-
conduite. Comparisons were performed for grain yield at harvest (A), grain protein concentration (B) and total amount on N apllied (C). Data were
collected in 27 french trials performed in 2023.

The main factor in the success of a N fertilization strategy is the ability to integrate the effect of the climatic year on the
crop's N requirements. Beyond the direct effect of the total N rate, the tactic of splitting is also very important in
maximizing nitrogen use efficiency. While an a priori calculation of the total N rate, as proposed by the balance sheet
method, allows only very few adjustments during season, the integral management of N fertilization is extremely
reactive to growth conditions. Growth projections from the CHN crop model, which determine wheat's nitrogen
requirements, are regularly updated during the campaign to incorporate the real year's climate. In addition, by coupling
CHN with on-board satellite sensors, the impact of non-climate-related accidents can be taken into account when
revising N requirements. The tool's decision rules also enable to optimize intervention dates and adjust the
recommended N rates to the dynamics of the wheat's N demand at each application. The combination of these different
solutions in the FERTI-ADAPT CHN tool gives it an enhanced ability to propose an optimized fertilization strategy.

Conclusions

The results confirm the potential of this new approach. It also opens up prospects for future developments, which will
make it possible to optimize fertilization strategies by integrating new optimization constraints, such as reducing the
crop's carbon footprint.
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Introduction

There is increasing interest in growing chickpea (Cicer arietinum L.) in Germany due to rising consumer demand and its
positive impacts on crop rotation. Field experiments investigating optimal management strategies are time-consuming,
expensive, and often offer only location- and seasonal-specific information. Crop growth models such as the Decision
Support System for Agrotechnology Transfer (DSSAT) can be used to optimize management strategies, including sowing
dates. Finding the optimal sowing date for a specific location is one of the most important practical foundations for
successful cultivation. The DSSAT CROPGRO model is therefore of high value due to its flexibility, which reflects the
different sensitivities of the crop to temperature, photoperiod, water deficit, and nitrogen within the various
developmental stages of the plant (Boote et al., 1998). In Southern Germany, weather conditions vary significantly
throughout the year; therefore, it is necessary to consider the crop's sensitivity to different weather conditions,
especially during spring and summer, on plant growth and development. The CROPGRO-Chickpea model was initially
developed and calibrated using data from India, collected in 1984 and 1986, and is described in Singh & Virmani (1996).
Due to the significant differences of growing conditions in Germany compared to India in terms of growing seasons,
climate zones, and cultivars, a calibration and evaluation of the model were necessary to achieve satisfactory simulations
with the DSSAT CROPGRO-Chickpea model. The objective of this study was to find the crop model-based optimum
sowing date of chickpea in Southern Germany.

Material and Methods

For simulations, the DSSAT CROPGRO-Chickpea model (version 4.8.5, Hoogenboom et al., 2024) was used to generate
the results presented in this study. As an experimental site, lhinger Hof (48 ° 44" N, 8° 55” E, 475 m a.s.l), Renningen, a
research station of the University of Hohenheim located in Southern Germany, was used. The cultivar and ecotype
coefficients were calibrated using a detailed data set collected from a field experiment at this location, sown on
30.04.2024, and evaluated with data from a second sowing date on 15.05.2024. Further evaluation was conducted at an
additional location and with two more years of experiments from 2022 to 2023 at lhinger Hof location (currently
submitted). In the field experiment, the EImo cultivar was used, which is an early-ripening desi-type chickpea, suitable
for German growing conditions. For this crop model-based study, a total of four different sowing dates were used,
including 30.04.2024 (actual), 15.05.2024 (actual), 15.04.2024 (fictive earlier sowing) and 30.05.2024 (fictive later
sowing). Crop model-based sowing date sensitivity analysis was conducted over a long period of weather data (historic
weather, 2015-2024) to investigate the impact of in-season weather variability on grain yield for four different sowing
dates. Input data for the soil profile and all other X-file inputs were averaged from the experimental data of both sowing
dates in 2024.

Results and Discussion

The phenological stages: Emergence date, anthesis date, first pod date, and first seed date of both data sets in 2024
were simulated with a maximum divergence between simulated and observed data of 3 days (Tab. 1). Due to pronounced
indeterminate growth of chickpea, physiological maturity was not considered. Yield in 2024 was underestimated with a
divergence of 12 kg DM ha™, respectively 224 kg DM ha™ for the first and second sowing date. Further evaluation also
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indicated a good agreement between simulated and observed values. A closer examination of the 2024 growing season
revealed that sowing on 15.04. led to delayed plant development compared to other sowing dates (Tab. 1). The long-
term average of days reaching the corresponding phenological stage indicated that with a later sowing date, phenological
stages are reached faster. The underlying reasons for this were that the higher daily temperature sums of later sowing
dates led to the faster fulfillment of photothermal days.

Table 1. Comparison of simulated and observed phenological stages in 2024 of cv. EImo and the days to reach the corresponding phenological stage
under four sowing dates. The days shown represent the average number of days from 2015 to 2024 to reach the corresponding phenological stage.

Sowing date EDAT ADAT PD1T PDFT
Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs.

15.04.2024 19 - 65 - 74 - 80 -
30.04.2024 12 15 55 57 63 64 71 72
15.05.2024 11 9 50 49 59 56 66 64
30.05.2024 12 - 55 - 63 - 71 -
15.04.2015-2024 (Avg.) 18.3 - 64.9 - 73.6 - 80.5 -
30.04.2015-2024 (Avg.) 14.6 - 56.3 - 65.4 - 72.4 -
15.05.2015-2024 (Avg.) 12.4 - 50.3 - 59.4 - 66.0 -
30.05.2015-2024 (Avg.) 9.9 - 46.5 - 54.5 - 61.6 -

EDAT= Emergence date; ADAT= Anthesis date; PD1T= First pod date; PDFT= First seed date

Growth-related variables, e.g., grain weight, tops weight, and leaf area index (LAl), were simulated with a high agreement
between simulated and observed data (Fig. 1a). Considering the yield average from 2015-2024, the highest average
yields were reached on sowing date 15.04. with 3514 kg DM ha™. Delayed sowing decreases the yield to an average of
3360 kg DM ha™. Sowing on 15.04. resulted in the most stable yield, whereas later sowing tended to be more susceptible
to higher variation (Fig. 1b). The harvest index (HI) is a crucial parameter in chickpea production, particularly in relation
to indeterminate growth. The highest HI was achieved on sowing dates: 15.04., 30.04., and 15.05. with an average of
0.44, whereas sowing on 30.05. led to an HI of 0.43 (Fig. 1c).
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Figure 1. Simulated and measured data for crop model calibration date (30.04.2024) of tops, grain, and LAl (a), boxplots of grain yield (kg DM ha™)
of four sowing dates for 2015-2024 (b), and box plot harvest index of four sowing dates (c) for the period 2015-2024 at lhinger Hof, Renningen.

Conclusions

The conducted study of varying sowing dates of chickpea under Southern German growing conditions over ten years of
historic weather data revealed that for chickpea varieties like EImo, the optimal sowing window is wide. It should be
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noted that sowing earlier (up to 15.04.) tends to increase yield, combined with higher yield reliability. Nevertheless,
farmers can act flexibly when choosing optimum sowing dates depending on factors like weather or soil conditions.
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Introduction

Soil is an essential natural resource that provides goods and services vital for ecosystems and human well-being. Recent
advances in geospatial technologies have made it easier to study soil properties and functions, generating data that can
be analyzed across space and time. When combined with mechanistic models, this information offers valuable
opportunities to deepen our understanding of soil processes (Silvero et al., 2023).

Recognizing the importance of modeling biomass production in pastures and its spatial variability, we propose a robust
multidisciplinary approach. In this sense, this research aimed to explore the correlation between DSSAT-derived biomass
outputs and environmental covariates, as a basis to support future digital soil mapping in pasturelands of the Brazilian
Midwest.

Materials and Methods

The methodology comprises three main stages, as illustrated in Figure 1. First, remote sensing products, climate data,
and legacy soil databases will be compiled, harmonized, and prepared as input for modeling pastureland with Urochloa
brizantha using the DSSAT model. In the second stage, the harmonized dataset will be used to run DSSAT simulations to
model pasture growth under baseline climate conditions (1980-2013). Finally, we will apply the Random Forest (RF)
algorithm to explore spatial relationships between environmental covariates and simulated biomass (kg DM ha™).

Results and Discussion

This research is expected to improve our understanding of the synergy between the DSSAT model and environmental
covariates, enhancing model scalability, while also addressing knowledge gaps related to the lack of spatio-temporal
information on pasture productivity in Brazil (Bolfe et al., 2024).

Conclusions

By the end of this studly, it is expected that the developed methodology, based on the synergy between the DSSAT model
and remote sensing data, will provide a robust tool for the scalable digital mapping of Urochloa brizantha pasture
productivity. This approach directly contributes to filling the spatio-temporal information gap on forage productivity in
the Brazilian Midwest, an essential factor for sustainable livestock intensification.
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Figure 1. Workflow of the applied methodology. This study used a harmonized, open-access dataset, including climate (Ballarin et al., 2023), plant
(Gomes et al., 2025), soil (Samuel-Rosa and Horst, 2024), and environmental covariates derived from remote sensing products processed on the
Google Earth Engine platform (Gorelick et al., 2017).
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Introduction

Maize is an important crop in West Africa (WA). Land degradation and climate change further constraints its productivity
and environmental sustainability thus promoting sustainable intensification practices (Sls) is strongly relevant in this
context. Comprehensive field trials could provide understanding of the performance of Sls across locations, nevertheless
they are often lacking in WA. Moreover, successful upscaling of Sls practices from specific locations to regional scales
requires further investigating the suitability of Sls, especially under high spatial and temporal heterogeneity of soil and
climatic conditions. Dynamic crop models representing the impact of Sls e.g. manure and/or inorganic fertilizers and
their rates theoretically could offer capabilities to investigate the effects of those Sl practices on crop yield and soil
nutrients.

Materials and Methods

We employ two crop growth models [SIMPLACE<LINTULS> (S-L5) and APSIM] along with the measured data from maize
field in the trial station in Nyankpala and 19 farmer fields (Dimabi and Langa) in Northern Ghana in 2014 with different
fertilizer types and rates [no fertilizer-control, inorganic (60N+40P+30K kg ha), manure (1.25, 1.5, and 5 ton hal),
manure and half inorganic, inorganic and half manure] to investigate the suitability of two models to simulate effect of
these Sls. The observed data included phenology, aboveground dry biomass (AGB), leaf area index (LAl), and grain yield
which were collected from the common growing maize cultivar (Obatanpa) in Ghana. Both models were calibrated based
on the given modeling protocol using the data from fertilized plots in the trial station then validated to the remaining
treatments and farmer fields. We also examined uncertainties in yield prediction due to use of different combinations
of soil (SoilGrid and FAO HWSD2.0) and climate (AgriERA5 and NASAPOWER) input data to the models. This modeling
work resulted to 135 modeling combinations (03 soil data inputs x 03 climate data inputs x 3 locations x 5 different
fertilizer treatments).

Results and Discussion

Calibration work shows that both models are able to simulate seasonal AGB and LAI. The APSIM model overestimated
LAl on 04 August and 27 August. The S-L5 overall simulated higher the AGB than the APSIM and the observed data on
19 September and 15 October. The simulated grain yield of S-L5 and APSIM are 4.33 + 1.67 and 3.82 + 0.67 ton ha,
respectively for the fertilized treatments which are close to the observed yield (3.11 + 0.75 ton ha). Compared to the
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observed yield in the control treatment (1.47 ton ha), two models adequately simulated the low yield due to no
fertilizer with 1.62 and 1.26 ton ha’, respectively. Two models capture well the decline of AGB, LAI, and grain yield
caused by the reduced fertilizer rates and types although onset and magnitude of simulated nitrogen stress differ
between the models (Figure 1). Earlier and more severe nitrogen stress were observed in the control while later and less
severe were found in the manure, the half inorganic and manure and inorganic treatments. Compared the observed
data, the grain yield was sastisfactorily simulated by two models under farmer fields with control fertilizer (in Langa) and
with manure (1.25 ton ha). However, S-L5 overestimated the yield in the farmer field with the inorganic fertilizer while
APSIM showed the overestimated yield under the manure application (1.5 tons ha™) in Dimabi. These illustrate the
difference and uncertainty in the modeling performance between two models. Premilinary analysis with regards
uncertainty due to the use of different climatic input data reveals that the daily global radiation from AgriERA5 was
overall 10% higher than the observed data and NASAPOWER data (in Nyankpala) which could contribute to 10-50%
difference in the simulated yield compared to the observed yield. These figures depends on the crop models (i.e. the
larger difference was in APSIM compared to S-L5) and on fertilizer treatments (i.e. the difference was more pronounced
in the control treatment than in the inorganic treatment). Use the FAOHSWD soil data resulted in the larger simulated
yield than the use of measured soil and SoilGrid data under the control treatment.
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Figure 1. Comparison of nitrogen index over growing season simulated by APSIM (a) and SIMPLACE(LINTULS5) (b) resulted from the different fertilizer
treatments in the maize field trial in Nyankpala, Ghana in 2014. The fertilizer treatments were control (no fertilizer), inorganic (60N+40P+30K kg ha),
manure (5 ton ha'), manure (5 ton ha) and half inorganic (30N+20P+15K kg ha'), inorganic (60N+40P+30K kg ha?') and half manure (2.5 ton ha?).
The vertical black lines indicate the fertilizer application events).

Conclusions

Our findings suggest a high potential of two crop models for their regional application for investigating the roles of Sls.
However, caution must be paid to uncertain output variables which strongly depend on both model parameterization
and on soil and climate input data.
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Introduction

Maize is a crucial food crop in Eastern and Southern Africa, providing at least 40% of the caloric intake for the rural and
resource-constrained population. It also serves as an essential input for industrial applications and animal feed (Kornher
et al., 2018). While the Zambezi Basin has the potential for high maize yields, actual production is low due to inadequate
fertility management and climate risks. This research aimed to develop improved fertilizer recommendations and
enhance climate resilience by predicting potential water-limited yields across various season types and maize varieties
at scale.

Materials and Methods

The study focused on the Zambezi Basin, which includes Malawi and parts of Mozambique, Zambia, Zimbabwe, and
Angola. The CGIAR-Excellence in Agronomy (EiA) Initiative aimed to predict potential maize yields as well as optimal
sowing dates and varieties using the AgWise Water Limited Yield crop modeling platform. The AgWise framework
incorporates various crop models, including APSIM, DSSAT, WOFOST, and Oryzae. This research utilized the spatialized
DSSAT 4.8 crop model, combined with weather and soil data from CHIRPS and AgERAS, along with soil information
from ISRIC.

Simulations were conducted using 22 years of historical data (from 2000) for three generic maize varieties (short,
medium, and long) across nine weekly sowing dates. The outputs of these simulations were aggregated across
different sowing dates, varieties, and ENSO phases, allowing for the determination of optimal sowing dates for various
season types. The date with the highest median yield was designated as the optimal sowing date.

Season types were classified based on the three ENSO phases, with phase determination achieved using the Oceanic
Nifio Index (ONI). An ONI value greater than 0.5°C indicates E/ Nifio conditions, while a value less than -0.5°C indicates
La Nifia. An ONI value between -0.5°C and 0.5°C signifies neutral conditions.
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Results

The analysis aggregated maize yields across various sowing dates, varieties, and ENSO phases. Notably, early sowing on
November 2 resulted in high yields across all ENSO phases compared to other sowing dates. However, delayed sowing
revealed differences in yield performance across the ENSO phases, with a rapid decline in yields under E/ Nifio
conditions. This pattern was particularly pronounced in long-season varieties during the El Nifio phase compared to
short and medium varieties (Figure 1).

Short and medium-season varieties exhibited greater yield stability, despite lower overall yields, compared to long-
season varieties. Yield unpredictability was notably higher under E/ Nifio conditions compared to La Nifia and neutral
conditions, particularly among long-season varieties and, to a lesser extent, medium-season varieties (Figure 1).

El Nifio conditions resulted in lower yields in the central and southern parts of the Zambezi Basin compared to the
northern, northeastern, and western regions of Zambia. This pattern was consistent across different varieties, with E/
Nifio leading to reduced yields for short-season varieties relative to other types.

The northern parts of the basin exhibited a lower standard deviation, indicating higher yield stability compared to the
central and southern regions. Consequently, there is a greater likelihood of achieving reliable yields in the northern areas
than in the southern parts of the basin (Figure 1).
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Figure 1: Optimum sowing dates across different varieties and ENSO phases for Maize in the Zambezi River Basin.

The earliest sowing dates, occurring in early November, are predominantly associated with long-season varieties across
the three ENSO phases. This trend is particularly pronounced during the La Nifia and El Nifio phases. In contrast, medium
and short-season varieties generally have slightly delayed optimal sowing dates compared to long-season varieties.
Northern Mozambique experiences relatively delayed sowing dates during the neutral and E/ Nifio seasons compared to
the La Nifia season (Figure 1).
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There is less variation in optimal sowing dates within a specific variety and district. Long-season varieties benefit from
early sowing, while medium-season varieties in Msekera experienced relatively delayed sowing dates. For short-season
varieties, the neutral phase saw delayed sowing dates, occurring around late December (Figure 1).

Conclusion

Early planting generally results in higher yields; however, this outcome is contingent upon the variety and season type.
Specifically, extremely wet and dry seasons may favor delayed sowing in the eastern parts of the Zambezi Basin.
Additionally, there are greater chances of achieving higher yields in the northern parts of the basin compared to the
southern regions.
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Introduction

Agriculture plays an important role in Honduras economy, contributing nearly 12% of the national GDP and serving as a
primary source of livelihoods, particularly in rural areas (Keller, 2013). Despite its importance, the sector is highly
vulnerable to climatic variability and extreme weather events. Smallholders are especially at risk due to limited adaptive
capacity, scarce resources, and restricted access to essential information (Jansen et al., 2006). These limitations increase
their susceptibility to yield losses. Addressing such challenges requires decision-support tools that provide site-specific
information to guide agricultural management planning. Although similar tools have proven their impact in other regions
(Sotelo et al., 2020), Honduras currently lacks a crop modeling system capable of delivering locally tailored
recommendations.

We propose “Suelos de Honduras: Site-specific crop modeling”, a tool system designed to generate site-specific
recommendations for five crops at the village level. The system integrates process-based crop growth models with
historical climate, soil, and agronomic data to guide optimal planting dates and nitrogen fertilization strategies, thereby
improving management practices with locally relevant information.

Materials and Methods

Data sources

Three primary inputs were used: climate, soil, and agronomic management data. Climate data were obtained from
CHIRPS (precipitation) and AgERAS (temperature and solar radiation) for 1990-2024. Soil information was derived from
SoilGrids, including 12 variables (e.g., pH, sand, clay, organic matter) across five depths. Agronomic data is supplied
directly by users when interacting with the platform (Fig. 1A).

Data processing

Environmental data were processed through geospatial transformations in Python V3.12 to generate model-compatible
input files. These were combined with user-supplied agronomic data (village location, crop variety, and management
practices) to run simulations.

Crop models

The system supports maize, beans, cassava, coffee, and banana. For maize, beans, and cassava, the Decision Support
System for Agrotechnology Transfer (DSSAT) (Jones et al., 2003) was used. Coffee simulations employed a model
calibrated for Central American conditions (Van Oijen et al., 2021), and banana simulations were conducted by using a
SIMPLE crop model (Zhao et al., 2019) (Fig. 1B).
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Results and Discussion Calibri pt 10

Site-specific recommendations

Climate and soil data are extracted at ~1 km resolution for the selected village and aggregated by soil texture
classification. This enables simulations that provide both village-level and intra-village recommendations, offering a
greater level of detail for decision-making (Fig. 1A).

Optimal planting dates

For coffee, the system simulates annual yield throughout the crop cycle (up to 12 years), showing differences in yield
performance when planting occurs in different decades. For the other crops, yield simulations are generated at 7-day
intervals across the growing season, allowing farmers to identify favorable planting windows (Fig. 1C, top) and evaluate
risks under ENSO conditions such as El Nifio and La Nifia.

Nitrogen fertilization

A Bayesian optimization framework evaluates combinations of planting dates and nitrogen application rates to maximize
yields (Fig. 1C, bottom). The system generates alternative fertilization strategies to improve yield performance for each
planting window.
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Figure 1. Workflow of the “Suelos de Honduras: Site-specific crop modeling” system for Honduras. A) Input data required for implementing the
system. B) Processed-based crop models implemented to simulate plant growth for five different crops. C) Example recommendation results for
maize. Top: yield responses across alternative planting dates. Bottom: Nitrogen fertilization recommedations generated using a Bayesian
optimization framework

Conclusions

“Suelos de Honduras: Site-specific crop modeling” is the first site-specific, multi-crop modeling system developed for
Honduras. By integrating environmental data with smallholder-supplied information, it delivers actionable
recommendations that can reduce yield variability, optimize resource use, and enhance resilience in smallholder farming
systems.
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Introduction

The climate emergency, closely linked to anthropogenic greenhouse gas (GHG) emissions, requires the adoption of
effective mitigation strategies in the agricultural and livestock sectors, which in 2017 contributed 6.1 Gt CO, eq per year
to global emissions (FAQ, 2017). In this scenario, sustainable management of soils and forage production represents a
key element for reducing environmental impact, but it also requires an innovative approach to farm management. The
FAO (2015), through the “Climate-smart agriculture” model, highlights the importance of increasing productivity while
minimizing environmental impact and optimizing the use of resources, also with the support of digital technologies.
Within this perspective, Spoke 03 Appare of the e.INS project — Ecosystem of Innovation for Next Generation Sardinia —
aims to support innovation processes, promote their dissemination, facilitate the transfer of technologies to the
production system, and engage local communities in the challenges of sustainable innovation. The project focuses on
the sheep supply chain in Sardinia and is developing an innovative digital platform capable of integrating existing
livestock and health databases, while also acquiring new data through advanced sensor technologies. The ultimate goal
is to provide decision-support tools for farmers, processors, and advisors, enhancing the economic and environmental
sustainability of the sector and making the sheep production and processing system more competitive and resilient. In
this context, the present work focuses on the forage production sector.

Materials and Methods
The e.INS platform — Ecosystem of Innovation for Next Generation Sardinia (Spoke 03 AGRIVET APPare), still in the form
of a prototype, has been designed as a multi-sector digital tool for the Sardinian sheep supply chain. It is structured
into different sections —animal production, animal health, food safety, and a section dedicated to the registration of
veterinary inspections — all interconnected with one another. Each section collects specific indicators and contributes
to building a decision-support system aimed at fostering innovation in farm management.
The forage production section has been implemented through the development of indicators designed to link both the
availability and the quality of biomass to the nutritional requirements of livestock. These indicators were first
organized into flowcharts, in collaboration with the IT team at Abinsula, in order to define inputs and outputs. This
process allowed the identification of crop productivity through yields per surface unit, considering different production
types such as hay, silage, and grain. Forage quality was assessed through chemical-physical parameters such as %NDF,
%ADF, protein content, ash, and starch, which also allow the calculation of the Relative Feed Value (RFV). Agronomic
practices were also taken into account, including pedoclimatic information (altitude, water availability, sowing time
and seed rate) as well as crop management techniques (soil tillage, fertilization, weed control, grazing, and mowing).
Another indicator developed was nitrogen use efficiency, estimated through the ratio between nitrogen exported with
the harvests (based on protein content) and nitrogen applied through fertilizers, in order to evaluate both resource use
and the environmental impact of cropping practices.
These data were then integrated with livestock requirements, considering the number of animals on farm, the length
of productive periods, and daily requirements expressed in Forage Unit for Lactation (UFL). This made it possible to
estimate forage coverage, namely the farm’s ability to meet the herd’s nutritional needs.
In its current prototype version, the platform provides synthetic indicators such as UFL production per hectare, analysis
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of farm forage coverage (required vs available hectares), the effective duration of the coverage period ensured by on-
farm production, and the share of unmet nutritional requirements. These outputs will be validated on pilot farms, thus
allowing the platform to be tested in real production contexts and its actual usefulness as a decision-support tool to be
verified, while also enabling the integration of management and production indicators directly at farm scale.

Results and Discussion
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Figures 1. Details of the e.INS — Spoke 03 Appare platform referring to the forage production section.

The development of the e.INS — Spoke 03 Appare platform has led to the definition of specific indicators for the forage
sector, allowing for the logical structuring of the section dedicated to cereal-forage production. These preliminary results
highlight the potential of the platform as a decision-support tool for farmers, thanks to its ability to interconnect
information from different sections and provide a clear and comprehensive overview of farm performance, with a focus
on improving sustainability. The integration of the various sections represents an added value, as it makes it possible to
overcome the fragmentation of farm data and to adopt a systemic view of the sheep supply chain, giving farmers the
opportunity to maintain full control over their enterprises.

Future activities will focus on testing the indicators under real farm conditions and refining the platform based on the
needs and feedback of farmers, with the aim of making it a truly transferable tool for the production system.

Conclusions

The development of the e.INS — Spoke 03 Appare platform represents an innovative step forward in the management of
the sheep supply chain in Sardinia, as it provides farmers with an updated overview of farm performance. In the forage
production section, the integration of selected indicators makes it possible to link yields and product quality,
management practices, and resource use efficiency with the other components of the platform, offering a useful tool to
ensure farm sustainability. The work carried out in the forage sector represents a concrete example of how the
integration of farm data and indicators can be translated into digital tools that support daily management and foster the
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transition towards more sustainable systems. Since the platform is still available in prototype form, the next activities
will focus on its validation, with the aim of making it fully operational for end users.
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Introduction

Crop production in Ethiopia is dominated by rainfed small hold farming, in which climate variability dictates productivity.
Producers and experts have to make decisions, with out a clear knowledge how the season will evolve and the
production they are likely to achieve. Despite this challenge, Ethiopia currently lacks an operational crop production
forecasting system to support planning and strategic decision-making.

This study investigates the potential of predicting maize yields 1-2 months in advance using an integrated climate—crop
modeling framework.

The existing operational crop monitoring systems in East Africa largely focus on water availability without considering
the complex reactions between climate variables and crop physiology. If agricultural communities are to benefit from
seasonal climate and crop production forecasts in managing climate risks, the information must be presented in terms
of production outcomes at a scale relevant to their decisions, with uncertainties expressed in transparent terms (Hansen
et al., 2006). One way of achieving seasonal climate and crop yield forecast is using integrated climate-crop modeling
framework. In Ethiopia, Tesfaye, et. al. (2023) demonstrate the possibility of seasonal maize yield prediction using CCAFS
Regional Agricultural Forecasting Toolbox (CRAFT) (Sheliaet al., 2019).

A functional spatial yield forecasting system could provide risk management options leading to greater economic and
social values under highly variable environments. Yet, no such forecasting system exists to support early decision making
in developing countries dependent on smallholder agriculture, such as Ethiopia. In this study, we present the
methodology, model evaluation, results, and limitations of forecasting maize yield at the national scale using a climate—
crop modeling framework.

Materials and Methods

Seasonal forecast from the European Centre for Medium-Range Weather Forecasts (ECMWF) were statistically
downscaled using Emprical Quantile Mapping (EQM) and evaluated against reference observation to assess if any
improvement archived over raw model outputs. The downscaled seasonal climate forecast was integrated with Decision
Support System for Agro technology Transfer (DSSAT) crop simulation model to predict maize production. The crop model
run on a national scale simulating maize at 10 km grid points. Simulations were run annually using a rule-based planting
strategy within a planting window based on estimates of agronomic onset of the wet-season using AquaBEHER R package
(Takele R, and Dell'Acqua M, 2023). First the crop model simulation was evaluated against agregated sub-national level
observed yield. Then the seasonal forecast driven simulation (maize prediction) was evaluated against observed weather
driven simulation. Model performance was assessed using Root Mean Squared Error (RMSE), Mean systematic error
(Bias), Index of agreement (d) and correlation analysis was used in the evaluation.

Results and Discussion

Downscaling improved the spatial representation of mesoscale rainfall patterns, capturing maxima and minima better
than the raw forecast. However, the downscaled forecast consistently failed to reproduce the observed seasonal rainfall
pattern, particularly in eastern highlands and in dry and wet years.
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The maize simulation consistently overestimates the observed vyield for all proportions and occurrences. This
overestimation by simulation exaggerated, predominantly over highland areas. However, the spatial variation of the
inter-annual yield variability was well reproduced by the simulation, which indicates a potential for predictability.

The association between the observed driven simulation and forecast driven simulation is presented in (Figure 1). The
forecast showed positive linear relationship with the observed maize simulation. About 55% of the inter-annual
variability of the observed yield simulation was explained by the forecast driven simulation. This predictive success of
the maize yield suggests, significant predictability of the maize yield across the country can be meet with reasonable
skill.

100 1 standard Error =15.3 Qt/ha R2=0.55

Yield (Qt/ha)
£ o
8 3

Forecast Weather Driven Simulated
~»n
o

Observed Weather Driven Simulated Yield (Qt/ha)

* The Statistics is significant at 5% level

Figure 1. Comparisons of forecast weather driven simulated yield with observed weather driven simulated yield over the hindicast (1996 — 2010)
period.

Conclusions

The study demonstrates the potential and usability of integrated climate-crop models by use case of forecasting maize
yield over Ethiopia. We aims to statistically downscale and integrates the output from dynamical seasonal forecast model
(ECMWEF SEASS5) in to crop simulation model (DSSAT-CERES-Maize) to predict maize production on national scale over
Ethiopia.

The assessment of the potential predictability of maize production suggests, the maize forecast does well predict the
observed maize yield. However, the forecast not in all cases was accurate. Slightly poor performance by the crop model
in lower yield environments and highland climates affected forecast accuracy. Good performance to predict inter-annual
and spatial variability of the yields which indicates Maize yield can be forecasted around two months before planting
with a reasonable skill. Future work will use this integrated framework to simulate crop production under perturbed
climate and management scenarios, identifying agroclimatic stressors and critical genetic traits that can benefit
sustainable smallholder farming systems under variable and changing climates.
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Introduction

Durum wheat (Triticum durum Desf.) plays a pivotal role in food security, nutrition, and agricultural economies across
the Mediterranean basin, serving as the primary raw material for pasta and couscous (Taranto and De Vita. 2019; Xynias
etal., 2020). Unfortunately, the Mediterranean area is widely recognized as a climate change hotspot (IPCC, 2025). Rising
temperatures and altered rainfall patterns are projected to reduce cereal yields and amplify spatial variability, especially
in rainfed systems (Lionello and Scarascia, 2018; Sellami et al., 2024). These conditions underscore the need for reliable,
high-resolution yield prediction tools to support timely and informed decision-making. Strong spatial gradients in
climate, soil, and management practices make yield estimation particularly complex at the field level. To address these
challenges and support more precise, data-driven decision-making, we present a deep-learning framework for predicting
harvested grain yield at field scale, based on freely available satellite imagery.

Materials and Methods

This study focuses on durum wheat fields located in the Capitanata district (Province of Foggia, Southern Italy), which
represents the most important durum wheat-producing area in Italy, accounting for approximately 15% of the national
cultivated surface (ISTAT, 2022). The core model is a Temporal Fusion Transformer (TFT) (Lim et al., 2021), which ingests
season-long sequences of Sentinel-2-derived vegetation indices (e.g., NDVI, EVI) along with satellite-based weather time
series (e.g., temperature and precipitation). Static geospatial covariates, including digital elevation (DEM) and soil
texture classes from pan-European sources (e.g., LUCAS), are incorporated as contextual features.

Model hyperparameters were optimized through systematic tuning with early stopping, minimizing validation loss and
maximizing R% Training follows a leakage-aware strategy that respects field boundaries and temporal coherence;
generalization is assessed via spatial cross-validation, leave-one-year-out, and a strict leave-one-farm-out protocol,
which withholds entire farms to evaluate transferability across unseen management and site conditions.

In addition to global performance metrics, the model is evaluated through spatially distributed R? and RMSE, computed
at parcel/tile level, mapped across fields and seasons. Farm-level aggregates are reported under leave-one-farm-out
folds to diagnose local bias and uncertainty. Benchmark comparisons include tree-based learners trained on identical
inputs (Choudhary et al., 2022; Zhou et al., 2023).

Results and Discussion

Yield observations derived from combine harvesters equipped with calibrated yield monitors, covering approximately
200 fields from multiple farms over five consecutive seasons (2021-2025), and pre-processed to remove lag and outliers
(figure 1a). The TFT model achieves R? values between 0.60 and 0.75 across seasons, with RMSE ranging from 0.5 to 0.9
t/ha depending on year and location, outperforming baseline model and capturing within-field yield gradients (figure
1b).
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Figure 1. a) Area of the study with yield observations collected for five consecutive season, differentiated by colours; b) Example, derived from one
field, of the spatial distribution of grain yield (top) and RMSE of the model (bottom).

Conclusions

This approach builds on recent advances in remote sensing and machine learning, demonstrating the potential of deep
neural networks to capture spatio-temporal patterns in multispectral data for accurate and scalable yield estimation.
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Introduction

Wheat yields are substantially constrained by biotic stress, with pests and diseases (Savary et al., 2019). Disease
development is strongly driven by environmental factors, particularly temperature and humidity, through their effects
on host—pathogen interactions as conceptualised by the disease triangle (Scholthof 2007, Prasad, Bhardwaj et al. 2021).
Among the most prevalent fungal diseases affecting wheat worldwide are yellow (stripe) rust (Puccinia striiformis),
powdery mildew (Blumeria graminis) and Septoria tritici blotch (Zymoseptoria tritici) (Wang, Zia-Khan et al. 2019).
Climate change is modifying temperature regimes and rainfall patterns, with consequences for disease occurrence and
distribution (Eastburn, McElrone et al. 2011, Miedaner and Juroszek 2021). Epidemiological models describe infection
processes but are rarely linked to crop growth and yield, whereas crop simulation models represent genotype x
environment x management (G x E x M) interactions under climate change (Hammer, Cooper et al. 2006, Asseng, Ewert
et al. 2015). Integrating disease processes into crop models remains challenging, but it is necessary for quantifying yield
losses under future climatic conditions (Donatelli, Magarey et al. 2017). This research aims to improve an existing wheat
disease model and link it with a crop model to analyse the effects of climate change on wheat growth and yield under
contrasting disease pressures. The specific objectives are to: (i) enhance the representation of yellow rust, septoria tritici
blotch and powdery mildew in a simple epidemiological model; (ii) integrate disease effects into a crop model to
represent genotype x environment x management x disease (G x E x M x D) interactions; and (iii) quantify the combined
impacts of climate change, disease infection and adaptation strategies on wheat yield in Denmark and the North China
Plain.

Materials and Methods

This research examines the effects of foliar wheat diseases on crop growth and yield under current and future climatic
conditions using a multi-scale approach that combines literature synthesis, climate-based disease analysis, field
experimentation and crop simulation. A meta-analysis synthesises published data on infection temperature thresholds
for yellow rust, septoria tritici blotch and powdery mildew, using reported minimum, optimum and maximum
temperatures to derive disease-specific temperature response curves and associated uncertainty. These curves provide
parameter values for subsequent epidemiological analyses. Temperature and humidity responses will be applied to
gridded hourly climate data to estimate climatic suitability for infection under historical conditions from ERAS and future
scenarios from ISIMIP. Field experiments in Denmark will examine the interaction between water availability, nitrogen
supply and disease type on wheat growth and yield using controlled inoculation treatments. Disease effects are then
incorporated into a crop simulation model to represent genotype x environment x management x disease interactions,
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with experimental data used for calibration and evaluation in analyses of climate change impacts and adaptation options
in Denmark and the North China Plain.

Results and Discussion

The meta-analysis synthesised published information on infection temperature thresholds for yellow rust, septoria tritici
blotch and powdery mildew, based on reported minimum, optimum and maximum temperatures. The analysis revealed
clear differences among diseases in their thermal preferences, with yellow rust associated with lower temperatures,
septoria with intermediate optima, and powdery mildew with higher temperature tolerance. Considerable variability
was observed across studies, particularly at minimum and maximum thresholds, reflecting differences in experimental
conditions, host cultivars and pathogen populations. Quantitative information on relative humidity and leaf wetness was
limited and inconsistently reported, preventing their inclusion in temperature—humidity response relationships.

The derived temperature response curves provide a consistent parameter set for future epidemiological and crop
modelling studies. The results indicate that uncertainty in infection thresholds, especially at thermal limits, is likely to
influence estimates of climatic infection suitability. Field experiments are designed to examine how disease effects on
wheat growth and vyield vary under different water and nitrogen conditions, with measurements of leaf area
development, canopy function and yield components. Together, these results will provide key inputs for the
development of coupled crop—disease models for analysing climate change impacts and adaptation options.

Conclusions

This study synthesises published evidence on infection temperature thresholds for yellow rust, septoria tritici blotch and
powdery mildew and derives disease-specific temperature response curves with associated uncertainty ranges. The
results show substantial variation among studies, mainly at the minimum and maximum temperature limits, and indicate
that quantitative information on relative humidity and leaf wetness requirements is often missing. These gaps contribute
to uncertainty in disease parameterisation. The temperature responses, together with experimental evidence that
disease effects vary with water and nitrogen supply, provide a basis for later climate-driven disease assessment and
crop—disease modelling to examine yield impacts and adaptation options under changing climatic conditions.
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